

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 619086.

Massive MIMO Overall system complexity

Liesbet Van der Perre, KU Leuven on behalf of the MAMMOET consortium Workshop at ESSCIRC, September 12th 2016

Massive MIMO boosts energy efficiency: cooperating benefits

- Array gain => total radiated power ~ 1/M
- Diversity gain additionally
- Channel hardening: reduce (remove) fading margins
- Averaging properties allowing much simpler (low-power) hardware
- Opening new application-architecture-circuit options:
 - Low output power/antenna enable digital Transmitters
 - Approximate computing may suffice

With 80%, the base stations are by far the main consumers

Energy Use

The total power picture: models at help

Configuration 1 🛞 Configurat	ion 2 💿 Config	juration 3	0
Power 753 W Through	hput 272 Mbp	s New	Clone
Hardware definition and sco	enario parameters	6	
Base station type 🕢			
⊗large ⊖small ⊖signa	I data LSAS		
Year of deployment 🚷	Default	2020 +	
Number of sectors 🥥	@ Default		
Antenna settings			
Power settings			
Bandwidth settings			
Load settings			
Power saving settings			
Modulation settings			
LSAS-specific settings			
Various antines			

Massive MIMO vs. other cellular BS

Different base station types:

- Large: macro, 10 100 W output, high accuracy architecture, multi-sector, cooled
- Small: pico, 0.1 1 W output, relaxed specifications, single-sector
- Massive MIMO: completely different architecture, 10 - 100 mW per antenna, coverage of large BS, hardware of small BS

Five main components:

- PA
- Analog FE
- Digital BB
- Digital control
- Power supply

6 Imec power model – www.imec.be/powermodel

Modeling the power consumption of Massive MIMO: low-accuracy assumptions

- Output power reduced from Massive MIMO link budget
- Large number of antennas => overhead power not negligible
- PA close to saturation
- Low signal accuracy of analog components
- Low resolution of digital components
 - Simpler arithmetic operations
 - Smaller memories

Why does it still work?

- Useful signal adds coherently over antennas
 - Interference and impairments add non-coherently
 - This improves experienced SNIR with respect to single-antenna values
- Overall power level is reduced, even more per antenna
 - This makes respecting out-of-band specs much easier

Scaling output power for Massive MIMO

- Objective: keep a similar coverage and user (SINR)
 - Ref. macro: 4 antennas, P_{ref} = 43 dBm/ant. (49 dBm total), 3 sectors
 - Massive MIMO: M = 200 antennas, K = 30 users, 1 sector
- Scaling approach
 - Start from SISO link budget, assuming infinite diversity (from coding over subcarriers) => P_{ref} total output power required
 - Scale to an M x 1 system, assuming perfect CSI and precoding => P_{ref} / M total (or P_{ref} / M² per antenna)
 - Serving K users => total power multiplied by K such that each user keeps the same power => K P_{ref} / M
 - Additional term R_{Power} represents effect of potential reduced spectral efficiency in Massive MIMO (overhead)

PA model: adapted for Massive MIMO

- Proposed scenario
 - 35 dBm total output power 12 dBm per-antenna
- Traditional PA trade-off
 - High linearity or high efficiency of very complex architectures
- Massive MIMO PA proposal
 - No need for high accuracy thanks to Massive MIMO robustness
 - Relaxed out-of-band specs thanks to reduced power levels
 - 50% efficiency realistic in strong non-linear operation
 - Minimal consumption value added (not arbitrary low PA power)

PA non-linearity:

creates non recoverable distortion

- Simulated with cubic monotonic model
- Output power renormalized (constant output constraint)
- PA characterization by 1 dB compression or saturation points

10

Back-off [dB] range

from 1 dB compression point

- □ 20 ≡ linear
- □ [-2, -8] ≡ strong saturation
- \leq -10 \equiv complete saturation

Input-output characteristic of amplifier with third order model

Normal (non-Massive) systems typically operate in this back-off zone

Even strong saturation causes limited degradation

OFDM 100x10, MRT, QPSK, LDPC 3/4

SC 100x10, MRT, QPSK, LDPC 3/4

Even acceptable at very high load

SC 100x25, ZF, 16QAM, LDPC 1/2

12

OFDM 100x25, ZF, 16QAM, LDPC 1/2

Claude Desset - Wireless Systems

Additional antennas improve EVM

100 antennas, 10 users

[30:10:100]x10, ZF, 16-QAM

Same total Tx power

0 dB back-off (w.r.t. 1 dB compression)

DAC quantization model:

Quantization at the end of digital baseband (Tx)

- Digital processing before fully simulated in floating-point
- Quantization at level of DAC with optimized scaling

Performance still good with 3 bits

DAC-level quantization tested with 1..8 bits (OFDM MaMi) 100x10 MaMi scenario, multipath Rayleigh, LDPC 3/4

CSI quantization fine with 2 bits

Quantization of channel matrix, used to create precoder Quantization study on ideal CSI (no uplink-based training)

MAMMOET - Massive MiMO for Efficient Transmission

Combined DAC + CSI quantization: Still good performance with 3-bit operation

Computing the power of components

- Main non-PA components (digital baseband, control, analog)
 - Reference power values scaled with scenario parameters, e.g.,
 - $P \downarrow Baseband = \sum i \in I \downarrow Baseband \uparrow P \downarrow i, ref \prod x \in X \uparrow (x \downarrow actual /x \downarrow ref) \uparrow s \downarrow i, x$
 - Scaling parameters
 - Bandwidth
 - Spectral efficiency (constellation and coding rate)
 - Number of antennas
 - System load (frequency-domain)
 - Users = spatial streams (<= antennas)
 - Quantization
 - Additional technology scaling
- Power supply overhead (efficiency-based)
- $P\downarrow Supply = (P\downarrow PA + P\downarrow Analog + P\downarrow Baseband + P\downarrow Control) * ((1+ 🛛 \downarrow ACDC)(1+ <math>\checkmark \downarrow DCDC) 1)$
- $P\downarrow Total = P\downarrow PA + P\downarrow Analog + P\downarrow Baseband + P\downarrow Control + P\downarrow Supply$

Analog FE power model: what's included

Subcomponent	Downlink [mW]	Uplink [mW]
Predriver	115	0
Modulator	200	0
Frequency synthesis	125	125
Clock generation	75	75
DAC	225	0
LNA	0	125
Mixer	0	200
VGA	0	63
ADC	0	175

Digital and control model: reference in GOPS

- Intrinsic efficiency assumptions: 8 GOPS/W (dedicated hardware)
- Overhead of memories/registers: 2.5x
- Specific functionality and complexity tables (GOPS), adapted for Massive MIMO (precoding, specific channel estimation, simpler compensation of non-idealities...)
- Further reduction of power consumption from quantization (4 bits assumed for Massive MIMO vs. 24 for large and 16 for small cells)

Digital and control model

Subcomponent	Downlink	Uplink	Training
	[GOPS]	[GOPS]	[GOPS]
Filtering	6.7	6.7	6.7
Up/Down-sampling	2	2	2
FFT/IFFT	0.5	0.5	0.5
MIMO precoding	.04	.04	0
Synchronization	0	2	0
Channel estimation	0	0	.01
OFDM Mod/Demod	1.3	2.7	2.7
Mapping/Demapping	1.3	2.7	2.7
Channel coding	1.3	8	0
Control	2.7	1	1
Network	8	5.3	0

Counter-intuitive values?

Subcomponent	Downlink [GOPS]	Uplink [GOPS]	Training [GOPS]
Filtering	6.7	6.7	6.7
Up/Down-sampling	2	2	2
FFT/IFFT	0.5	0.5	0.5
MIMO precoding	.04	.04>	0
Synchronization	0	2	0
Channel estimation	0	0	.01
OFDM Mod/Demod	1.3	2.7	2.7
Mapping/Demapping	1.3	2.7	2.7
Channel coding	1.3	8	0
Control	2.7	1	1
Network	8	5.3	0

Scaling to 100x10, QPSK 3/4

[270 Mbps]

- Filtering: 670 GOPS
- MIMO Precoding: 40 GOPS
- OFDM: 270 GOPS
- Demapping: 3 GOPS
- Decoding: 20 GOPS
- Precoding: M = 100 CMACs per data symbol ~ 40 GOPS
 - (1 MAC = 1 MUL + 1 ADD => 2 OPS)
- Filtering: (M/K) * 160 CMACs/symbol => ~ 600 GOPS
 - 40-tap filter (MACs), 2x OSF, 2x overhead for shift-registers
 - Room for further reduction of the specs

Massive MIMO has low complexity

Complexity/energy optimized system: great potential gains in reach

to be confirmed in last phase to be confirmed in last phase % 🔿 W 🔘 MaMi throughput 1.03 kW 1 000 • 3x larger 900 800 MaMi power 700 600 o 7x lower 500 (traditional) 400 o 27x lower 300 (digital RF) 200 139 W 100 36.8 W Macro MaMi - traditional MaMi - Digital RF Power amplifier Supply Analog Baseband Control Control

Massive MIMO: fuelling 5G with a green footprint

MAMMOET Grant Agreement No. 619086

"The **MAMMOET** project has received funding from the European Union's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement number ICT-619086."

If you need further information, please contact the coordinator: TECHNIKON Forschungs- und Planungsgesellschaft mbH Burgplatz 3a, 9500 Villach, AUSTRIA Tel: +43 4242 233 55 Fax: +43 4242 233 55 77 E-Mail: coordination@mammoet-project.eu

The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The users thereof use the information at their sole risk and liability.