

Massive MIMO testbed: Validation

STEFFEN MALKOWSKY, LUND UNIVERSITY, SWEDEN

Why do we need a testbed?

- Theoretical results show that massive MIMO has very promising features for future wireless generation, however they cannot answer all questions:
- 1) How does it perform under real-life conditions?
- 2) How can we model massive MIMO channels?
- 3) Implementation challenges/issues?
- 4) Required reciprocity calibration accuracy?
- 5) Is pilot contamination a problem?

LUMAMI TESTBED

LuMaMi Testbed: Parameters

- ≻100 BS antennas
- ≻Serving up to 12 UEs
- ≻50 SDRs + 6 SDRs as UEs
- ≻4 Central Processing units performing MIMO processing
- >3.7 GHz carrier frequency
- ≻LTE-like parameters
- Uncoded transmission

LuMaMi Testbed: Processing

- Per-antenna (OFDM) processing performed on USRP SDR
- Data of up to 8 USRPs combined and send to centralized processing

LuMaMi Testbed: Processing

- Centralized processing distributed over 4 units, each working on ¼ bandwidth
- 3 detector types implemented: MRC/MRT, ZF and regularized ZF

LuMaMi Testbed: Processing

- A standard windows computer hosts the complete system
- Configures system
- Visualizes parameters, e.g. channel impulse response and acts as source and sink for video streams

FOUR TESTS

Indoor Measurements

- Serving 12 users in groups of 4 on UL and DL in a lecture hall
- ➢ Record BERs while sweeping amplifier gains (0-30 dB)

➤ UL: Sweep the gain of the UEs transmitter

- > DL: Sweep the gain of the BS transmitters
- ➤ 18 Million bits transmitted per step
- ➤Compare performance of MRC/MRT vs. ZF

Setup

Base station placed at the front of the lecture hall

Users are distributed in groups of 4 with close spacing inside each group

10

Uplink BERs (QPSK)

11

≻ZF detector

- Close by users (UE8-11) show best BERs
- Far users (UE0-UE3) show worst performance
- ➤UE0/1 interference limited
 - Bad performance at full power close to saturation

Uplink BERs (16-QAM)

≻ZF detector

- Close by users (UE8-11) shows best BERs
- Far users (UE0-UE3) show worst performance
- ►UE0/1 interference limited
 - Bad performance at full power close to saturation

Downlink BERs (QPSK)

- ≻ZF precoder
- Close by users (UE8-11) shows best BERs
- Other users (UE0-7) show similar performance
- High performance difference between UE8-11 and the UE0-7

Downlink BERs (16-QAM)

≻ZF detector

- Close by users (UE8-11) show best BERs
- Almost all users show a significant BER floor
 - Performance limited by reciprocity calibration accuracy and/or interference

ZF vs. MRC/MRT

MRC/MRT showing significant error floors

> Usable in practical systems?

➤ZF far superior in real-life channels

Collaborative Measurements in Bristol

- First joint measurement campaign with Lund University and University of Bristol in May 2016
- Based on Bristol MaMi system with 128 antennas
- ≻How many users can be served simultaneously?
- >What spectral efficiency can be achieved?

Setup

Base station

Closely spaced users

Overall setup from base station view

Results

≥22 users served simultaneously using 256-QAM

- Uncoded transmission
- ➤ Equating a spectral efficiency of 145 b/s/Hz

		User Inacti∨e	User Inactive

World record spectral efficiency

First Outdoor Trial I

First outdoor test to see whether reciprocity calibration and over-the-air synchronization works outdoor

Focus on achieving good UL and DL constellations with up to 8 users and an additional moving user

First Outdoor Trial III

UL constellations on BS

ZF

DL constellations with ZF

First Outdoor Trial III

One user in car

Joint Mobility Trials in Lund

- Together with a team from University of Bristol we performed the first mobility test using the LuMaMi testbed
- Goal was to analyze how well massive MIMO works in dynamic environments
- Tests were performed with up to 12 users, some mounted on cars (up to 40 km/h) and some mounted on cycle carts (walking speed)
- Uplink channel data, BERs and LabVIEW front panels were recorded

Setup / Equipment

Base station deployed on rooftop

Users mounted on cycle cart

Different tested scenarios I

Gradually
adding users
while
observing
performance

Different tested scenarios II

Scenario with 6 users as pedestrians and 4 users on cars

Video including live BERs and constellations

10 user mobility test video

PLEASE CHECK OUT FOLLOWING LINK

https://www.youtube.com/watch?v=wPPMrr4rHmo

Conclusions

- The LuMaMi testbed is fully functional and working for UL and DL transmission
- In a joint campaign Lund University and University of Bristol achieved a new world record for spectral efficiency
- Indoor measurements showed that even with 100 antennas at the BS, MRC/MRT show significantly worse performance than ZF
- Mobility measurements showed that massive MIMO works for moving users with relatively good BER performance on UL and DL (more analysis to be performed)

Frame Structure

