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Claude Desset, André Bourdoux, Ubaid Ahmad & Liesbet Van der Perre (IMEC)
Ove Edfors, Liang Liu, Steffen Malkowsky, Hemanth Prabhu & Joao Vieira (ULUND)
Wim Dehaene (KUL)
Eleftherios Karipidis (EAB)

MAMMOET D3.1 Page I



First assessment of baseband processing requirements for MaMi systems

Executive Summary

Baseband processing is one of the critical parts of Massive MIMO systems and the efficiency
at which it can be performed is an important factor. Due to the structure of Massive MIMO
with many coherent transmit and receive streams at the base station antenna array, there are
many options to consider when designing the baseband processing.

First, there is a certain amount of processing needed to perform initial synchronization,
such as reciprocity calibration of transceivers. This category of processing is important but
performed only at certain (well separated) time instants and, as such, not highly time-critical
in its nature. After initial synchronization, there are several processing tasks that have to
be performed in real-time while communication is ongoing. This includes channel estimation,
design/calculation of transmit precoding and receive combining matrices, signal precoding,
data detection, etc. Not only do we need to find appropriate and optimized algorithms for the
different Massive MIMO processing tasks, but the available implementation options also have
to be investigated for each algorithm. One important aspect in this context is that certain
parts of the processing can be performed in a distributed way close to the antenna elements,
which makes this processing highly scalable with the number of base station antennas, while
other parts need to be performed at a central location where signals from multiple antenna
elements are available. Further, appropriate hardware platforms have to be chosen so that
various requirements on system flexibility and efficiency can be met.

To set the stage for future work in WP3, this deliverable addresses the above topics by
collecting available knowledge among partners and results from preliminary investigations per-
formed in the first few months of the MAMMOET project. Conclusions include:

• Preliminary investigations indicate that the difference between single-carrier and OFDM
based Massive MIMO is not large. Neither in terms of resulting system performance nor
in terms of processing complexity.

• Algorithms for Massive MIMO processing allow for many trade-offs to achieve high per-
formance and low complexity, such as reduced-accuracy matrix inversions.

• The structure of Massive MIMO allows for new and efficient means to reduce power
variations in the transmitted signals, without large sacrifices in performance, making it
possible to use highly power-efficient non-linear amplifiers.

• Since Massive MIMO is still in its infancy, early implementations need to be flexible to
allow changes when processing strategies improve. MAMMOET will start with highly
flexible software-defined radio platforms and move towards more optimized implementa-
tions.

• Due to the processing of a large number of antenna streams, memory requirements and
data shuffling capacity play an important role. It is both possible and important to use
the specific advantages of Massive MIMO, such as imperfections being hidden/suppressed
by averaging-effects over many antennas, to make appropriate optimizations.
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Chapter 1

Introduction

This deliverable constitutes a first assessment of the baseband processing requirements for MaMi
systems. We approach the topic by first giving an algorithm overview, followed by a discussions
on different processing hardware platforms and how to map algorithms to different hardware.
Finally we summarize our initial assessments.

The basic concept of Massive MIMO is shown in Fig.1.1, where a base station is using
M antennas to spatially multiplex K � M single-antenna terminals. The success of such a
spatial multiplex, in both up- and down-link, relies on several important concepts. The base
station needs good enough propagation channel knowledge in both directions, on which efficient
down-link precoders and up-link detectors can be based. Since acquisition of channel-state
information (CSI) is generally infeasible in the down-link [34], massive MIMO systems typically
rely on channel reciprocity, up-link channel estimation, and time-division duplex (TDD). With
the massive number of channels to estimate between base station and mobile stations, a long-
enough channel coherence time is needed to allow for efficient operation. The accuracy at which
we can estimate the channel and the time interval over which it can be assumed constant bring
fundamental limitations to massive MIMO [34].

Many of the algorithms required for massive MIMO are also found in other wireless commu-
nication systems, such as traditional MIMO systems, with the essential difference that a much
larger number of transceiver chains have to be processed in parallel. While this expands the
processing complexity in one dimension, properties of massive MIMO also allows many of the
processing algorithms to be linear rather than non-linear, which helps to balance the massive
increase of transceiver chains. The algorithms discussed and evaluated in Chapter 2 are all
central in the context of massive MIMO.

When implementing any communication system, it is essential to select the correct hardware
platforms. Depending on the requirements on flexibility and energy efficiency, different choices
come into play. For the prototype development and proof-of-concept work in MAMMOET
it is quite natural to use as flexible platforms as possible. A typical choice would include
a combination of software defined radios (SDRs) complemented by additional computational
resources. Due to the large number of transceiver chains and high requirements on synchronized
real-time processing, often with an exchange of large amounts of data between processing nodes,
it is important that the chosen platform has a high enough data shuffling capacity. These issues
are discussed in more detail in Chapter 3.

An important part of selecting the appropriate hardware platform deals with how massive
MIMO algorithms can and will be mapped onto computational hardware resources. In some
cases it is quite sufficient that low-performing generic processors execute an algorithm, while
in other cases much more advanced combinations of accelerators and/or specific computational

MAMMOET D3.1 Page 1 of 78



First assessment of baseband processing requirements for MaMi systems

Figure 1.1: Massive MIMO base station using M antennas to perform spatial multiplex of K
single-antenna mobile stations.

structures are required. An important part of the work in MAMMOET is to find algorithms
that ensure high communication performance, which can be efficiently mapped onto appropriate
hardware and thereby make massive MIMO a proven alternative for future communications
standards. The first steps in this direction in MAMMOET are discussed in Chapter 4.

A short summary of Massive MIMO baseband processing requirements is given in Chapter 5.
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Chapter 2

Algorithm Overview

A massive MIMO system relies on many different algorithms, for everything from initial system
synchronization and parameter acquisition to precoding, detection, and user scheduling. Many
of these will be addressed in the MAMMOET project and here we present an initial overview
of some of the important algorithm categories, starting with reciprocity calibration and moving
on to channel estimation, precoding, detection and scheduling of pilots and users. Finally we
make a comparison of massive MIMO based on single- or multi-carrier techniques.

2.1 Reciprocity Calibration

Multi-user MIMO systems operating with a large number of base station (BS) antennas, render
explicit downlink channel estimation as inefficient. Basically, one can not afford to transmit
pilot symbols from every antenna in the downlink, receive them at the terminal side, and feed
back the channel state information (CSI) to the BS so that it can calculate suitable precoding
coefficients. Such a procedure would degrade the spectral efficiency significantly considering
the amount of feedback information required, due to the large number of BS antennas.

An approach to compute proper precoding coefficients is to operate in time division duplex
(TDD) mode, and rely on the reciprocity of the channel based on uplink pilots. However, it is
generally agreed that the propagation channel is reciprocal, but the different transceiver radio
frequency (RF) chains are not. Hence, in order to use reciprocity and calculate the precoding
coefficients, one needs to know or estimate the differences in the (frequency) responses. Figure
2.1 illustrates how a typical duplex channel is experienced by a signal in a wireless transmission.

Figure 2.1: Illustration of uplink/downlink radio channels.
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Let the uplink and downlink narrow-band radio channels between the BS and MS be denoted
as

gU
m,k = rB

m g̃U
m,k t

M
k

gD
k,m = rM

k g̃D
k,m tBm,

(2.1)

where m ∈ [1, ...,M ] is the BS antenna index, k ∈ [1, ..., K] is the mobile station (MS) antenna
index, rB and rM represent the BS and MS receiver RF chains, tB and tM represent the BS
and MS transmitter RF chains, and g̃U and g̃D are the uplink and the downlink propagation
channels, respectively. Note that all terms in (2.1) are complex random variables due to the
narrow-band nature of the model.

Assuming perfect reciprocity of the propagation channel, i.e. g̃U
m,k = g̃D

k,m , a relation between
the uplink and downlink radio channels can be established as

bm,k =
rM
k g̃D

k,m tBm
rB
m g̃U

m,k t
M
k

=
rM
k tBm
rB
m tMk

. (2.2)

Here we call bm,k the calibration coefficient between radios m and k, since if known, one can
overcome the channel non-reciprocity and compute the downlink channel based on the uplink
channel estimates.

Let us now introduce the channel between two BS radios as

h`,m = rB
` h̃`,m tBm (2.3)

where ` 6= m, ` ∈ [1, ...,M ], and h̃`,m is the propagation channel between the BS antennas `
and m. We introduce the calibration coefficient between BS radios as

h`,m = bm→` hm,`, (2.4)

which by assuming perfect reciprocity yields1

bm→` =
h`,m
hm,`

=
rB
` t

B
m

rB
mt

B
`

=
1

b`→m
. (2.5)

One of the main contributions from [58] was an internal reciprocity calibration method for
a massive MIMO base station. The method has two main points as basis:

1.

bm,k =
tBm
rB
m

rM
k

tMk
=
rB
n t

B
m

rB
m tBn

rM
k tBn
rB
n t

M
k

= bm→nbn,k. (2.6)

i.e., calibration between radios m and k can also be achieved if their forward and reverse
channels to another BS radio n are jointly processed. Throughout this analysis, we set
n = 1 for convenience and denote this radio as the reference radio.

2. As long as each downlink channel estimate from all BS antennas deviates from the real one
by the same complex factor, the resulting downlink beam pattern shape does not change.
Thus, since the transceiver response of any terminal shows up as a constant factor to all
BS antennas, its contribution can be omitted from the calibration procedure.

1Note that we denote the calibration coefficients between two BS radios using “→” to distinguish from the
calibration coefficient between a BS radio and an MS which uses “,”.
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Combining (2.2) with the previous two points yields

gD
k,m = bm,k g

U
m,k (2.7)

1)
= bm→1 b1,k g

U
m,k (2.8)

2)⇔ g
′D
k,m = bm→1g

U
m,k (2.9)

where g
′D
k,m is a relative downlink channel that absorbs b1,k. Thus relative downlink channels

can be obtained by multiplying the respective uplink channels with their respective calibration
coefficients to a reference radio. The authors in [56] took this approach one step forward in
order to calibrate access points of a distributed MIMO network. A novelty in their approach
was

g
′D
k,m = bm→1 g

U
m,k (2.10)

⇔ g
′′D
k,m = bm gU

m,k (2.11)

where bm = rBm
tBm

= 1
bm→1

tB1
rB1

, and g
′′D
k,m is another relative downlink channel. This relative equiva-

lence not only relaxes the double-indexing overhead, but allows different calibration coefficients
to be treated as mutually independent.

Note that the absolute reference to the terminals was lost in the derivation step 2), which
makes bm→1 or bm valid calibration coefficients up to a complex factor. Thus, downlink pilots
still need to be broadcast through the beam to compensate for this uncertainty, as well as for the
RF chain responses of the terminals. The overhead of these supplementary pilots is reported as
very small [25]. The calibration coefficients can be valid over long periods of time if BS radios
share the same synchronization references. For the case of the BS detailed in Chapter 3, this
coherence time can range up to hours.

One way to estimate the calibration coeficients bm is sounding the M antennas one-by-one
by transmitting a pilot symbol from each one and receiving on the other M −1 silent antennas.
For simplicity, we use a pilot symbol p = 1. Let ym,` denote the signal received at antenna
m when transmitting p at antenna `. It follows that the received signals between any pair of
antennas can be written as [

y`,m
ym,`

]
= h̃`,m

[
rB
` t

B
m

rB
m tB`

]
+

[
n`,m
nm,`

]
= α`,m

[
b`
bm

]
+

[
n`,m
nm,`

]
,

(2.12)

where α`,m = tB` t
B
mh̃`,m = tB` t

B
mh̃m,` due to reciprocity, and [n`,m nm,`]

T is a vector of independent
zero-mean circularly symmetric complex Gaussian distributed random variables, each one with
variance N0.

To access the accuracy of a real-array calibration, we simulated the calibration of a 5 by 20
planar patch array (see [21] for array description). Figure 2.2 shows the different calibration
performances obtained from different estimators [62] varying on the number of received signals
used for calibration purposes.

We now provide a rough estimate of the calibration SNRCal regime where a massive MIMO
BS may operate. If such BS yields similar specifications as the BS in the LuMaMi testbed, the
SNRCal regime is given by:

SNRcal = PRX −N ≈ 80dB, (2.13)
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Figure 2.2: Mean squared error (MSE) of the calibration coefficients computed for the neighbor
and the farthest antenna from the reference. See [62] for derivation of the different estimators.

where PRX = −15 dBm is the maximum allowed receive power per RF-chain,

N = 10 log10(kBT0) +NF +G ≈ −95dB, (2.14)

is the receiver noise power, k is Boltzmann’s constant, B = 20 MHz is the channel bandwidth,
T0 = 290◦K is the standardized room temperature, NF = 6 dB is the noise figure of the
receiver chain, and G = 0 dB is a normalized amplifier gain. In practice, hardware limitations
as ADC resolution and frequency harmonics will degrade the calibration performance. However,
a margin of tens of dBs is still available to compensate for such impairments while still achieving
“good enough” performance.

2.2 Channel estimation

Each BS uses its multitude of antennas for phase-coherent precoding in the downlink and re-
ceive combining in the uplink, as described in Sections 2.3 and 2.4 respectively. The main idea
is to adaptively amplify desired signals to/from each user and simultaneously reject interfering
signals. This requires some knowledge of the user channels. Such channel state information
(CSI) is typically acquired by measuring the received uplink signals when the users send known
pilot signals. This is a challenging task in cellular networks, where the transmission resources
are reused across cells, because the pilot signals are then inevitably affected by inter-cell in-
terference. This so-called pilot contamination limits the quality of the acquired CSI and the
ability to reject inter-cell interference (unless intricate subspace methods can be used for de-
contamination, as initially described in [40]).

The impact of pilot contamination is usually studied under the assumption that exactly the
same pilot signals are used in all cells. However, this is a theoretical simplification that needs
to relaxed in practical implementations; particularly because using only a subset of the pilot
signals can greatly improve the estimation quality and end performance [9]. Consequently, this
section provides channel estimation results for arbitrary pilot allocation.

Let each coherence interval consist of S symbols. The pilot signals span B of these symbols,
where 1 ≤ B ≤ S, and are assumed to be sent in the beginning of the interval for notational
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convenience. Each pilot signal can be represented by a deterministic vector v ∈ CB and the fixed
per-symbol power implies that all entries have unit magnitude: |[v]s| = 1 for s ∈ {1, . . . , B}.
We assume that all pilot signals originate from a predefined pilot book

V = {v1, . . . ,vB} where vH

b1
vb2 =

{
B, b1 = b2,

0, b1 6= b2.
(2.15)

Hence, the B pilot signals form an orthogonal basis and can, for example, be taken as the
columns of a discrete Fourier transform (DFT) matrix [7].

Suppose there are J cells and K scheduled/active users per cell. Let hjlk ∈ CN denote
the channel response between user k in cell l and BS j. Moreover, let vilk be the pilot signal
allocated to user k in cell l, where ilk ∈ {1, . . . , B} is the index in the pilot book V . The received
signal Yj ∈ CM×B at BS j from pilot signaling can then be modeled as

Yj =
J∑
l=1

K∑
k=1

√
plkhjlkv

H

ilk
+ Nj, (2.16)

where plk is the average transmit power of user k in cell l and Nj is additive circularly complex
Gaussian noise where each element is independent and has zero mean and variance N0.

There is a variety of methods to estimate the unknown parameters from noise observa-
tions [23]. The classical methods assume that the unknown parameters are deterministic while
the noise/interference is stochastic with some (semi-)known distributions, while the Bayesian
methods assume that also the unknown parameters are stochastic with some (semi-)known
distributions. Since the channel estimation in massive MIMO is intrinsically affected by pilot
contamination, one needs to model the interfering channels as stochastic and thus it makes
sense to also model the desired channels as stochastic. This section will therefore only deal
with Bayesian estimation methods.

Suppose that E{hjlk} = h̄jlk is the constant line-of-sight component of the channel hjlk
and that each element of hjlk has the variance βjlk, for each user k in cell l to BS j. If there
is no line-of-sight component for a specific channel, then h̄jlk = 0. Under these statistical
assumptions, the linear minimum mean squared error (LMMSE) estimator of the effective
channel heff

jlk =
√
plkhjlk at BS j is

ĥeff
jlk =

√
plkh̄jlk + plkβjlk

(
vH

ilk
Ψ−1
j ⊗ IM

)
vec(Ỹj), (2.17)

where ⊗ is the Kronecker product, vec(·) is the vectorization operator (i.e., stacking the columns
of a matrix), and

Ỹj = Yj −
J∑
l=1

K∑
k=1

√
plkh̄jlkv

H

ilk
(2.18)

Ψj =
J∑
`=1

K∑
m=1

p`mβj`mvi`mvH

i`m
+N0IB. (2.19)

The estimation error covariance matrix Cjlk ∈ CM×M is given by

Cjlk = E
{

(heff
jlk − ĥeff

jlk)(h
eff
jlk − ĥeff

jlk)
H

}
= plkβjlk

(
1− plkβjlkvH

ilk
Ψ−1
j vilk

)
IM

(2.20)
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Figure 2.3: The downlink of a massive multi-user MIMO system.

and the mean-squared error (MSE) per element is

MSEjlk =
1

M
tr(Cjlk) = plkβjlk

(
1− plkβjlkvH

ilk
Ψ−1
j vilk

)
. (2.21)

Note that the LMMSE estimator in (2.17) is based on a minimal statistical characterization;
only the mean value h̄jlk and the variance per channel element βjlk is assumed to be known.
These first and second order moments can be easily measured from the received signal and will
typically vary at a much slower rate than the useful signal (e.g., 100 times slower according
to the measurements in [63]). The stochastic distribution can be any that satisfies these main
properties, and the channel responses can either be independent over the antennas or correlated.

If the channels would be circularly symmetric complex Gaussian as hjlk ∼ CN (h̄jlk, βjlkIM),
then (2.17) is also the minimum mean squared error (MMSE) estimator; that is, not only the
linear estimator that minimizes the MSE but also the only estimator that minimizes the MSE.
Notice that this statistical distribution is known as Rayleigh fading when h̄jlk = 0 and Rician
fading when h̄jlk 6= 0.

2.3 Downlink precoding

A massive MIMO base station with M antennas, shown in Figure 2.3, is considered. It serves K
single-antenna users over a frequency-selective channel modelled as an FIR filter with L taps.
For simplicity in exposition, it is assumed in this section that the channel estimation in Section
2.2 provides the true channels. Signals are transmitted over a time interval [−L,N−1], where
N is the number of transmitted symbols.

The transmit signals at time n are denoted x[n] , (x1[n], . . . , xM [n])T, where xm[n] is the
transmit signal at antenna m. The transmit signals x[−L], . . . ,x[−1] are called the prefix.
It is assumed that E[ ‖x[n]‖2 ] = 1, ∀n. The transmit signals are pulse shape filtered with a
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root-Nyquist pulse p(t) into continuous-time signals

xm(t) =
N−1∑
n=−L

xm[n]p(t− nT ), ∀m, (2.22)

and amplified to transmit power before being broadcast. It is assumed that p(t) is time limited
and that adjacent blocks of transmit signals do not interfere with each other.

The signals received at time n by the users, after matched filtering and sampling, are denoted
y[n] , (y1[n], . . . , yK [n])T, where yk[n] is the signal received at user k. The signals received
before n = 0 and after n = N−1 are discarded.

The channel is described by the K×M -matrices H[`], ` = 0, . . . , L−1, whose (k,m)-th el-
ements {hkm[0], . . . , hkm[L−1]} form the impulse response from antenna m to user k. In this
section, it is assumed that the base station knows the channels perfectly and that each user
knows the statistics of its channel. However, the estimated channel matrices from Section 2.2
could be used instead of the channel matrices H[`]. The received signal vector at time n is
given by

y[n] =
√
P

L−1∑
`=0

H[`]x[n− `] + w[n], (2.23)

where w[n] ∼ CN (0, IK) is an i.i.d. zero-mean white Gaussian noise vector with covariance
matrix IK (the K×K-identity matrix). The factor P thus represents the transmit power nor-
malized by the noise variance.

Throughout this section, it is assumed that the prefix is cyclic:

x[n] = x[N + n], for n = −L, . . . ,−1. (2.24)

This results in a concise mathematical description of the channel, see for example [61]. More
precisely, define the block-circulant KN×MN -matrix

H ,

H[0] 0 0 H[L− 1] H[1]

H[1] H[0] 0 H[2]

0 0 H[L− 1] H[0]




(2.25)

then the input-output relation of the channel is given by

y =
√
PHx + w, (2.26)

where

x , (xT[0], . . . ,xT[N − 1])T, (2.27)

y , (yT[0], . . . ,yT[N − 1])T, (2.28)

w , (wT[0], . . . ,wT[N − 1])T ∼ CN (0, IKN). (2.29)

With a cyclic prefix, (2.23) is also easily given in the frequency domain. Let F ∈ CN×N

be the N -point discrete Fourier transform (DFT) transform with 1√
N
e−j2π(n−1)(n′−1)/N on its

(n, n′)-th position and define the two unitary matrices FK , F⊗ IK and FM , F⊗ IM . Then

H̃ = FKHFH
M (2.30)
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is the block-diagonal matrix, whose diagonal blocks

H̃[n] =
1√
N

L−1∑
`=0

H[`]e−j2π`n/N , n = 0, . . . , N − 1, (2.31)

are the DFTs of {H[`]}. Let

x̃ , (x̃T[0], . . . , x̃T[N − 1])T= FMx (2.32)

ỹ , (ỹT[0], . . . , ỹT[N − 1])T= FKy (2.33)

be the DFTs of the transmit and receive signals respectively. The relation between x̃ and ỹ is
then

ỹ[n] =
√
P H̃[n]x̃[n] + w̃[n], n = 0, . . . , N − 1, (2.34)

where w̃[n] ∼ CN (0, IK).

2.3.1 Linear precoding

The transmit signals have to be chosen such that the users receive the symbols intended for
them, without being too disturbed by the symbols intended for other users. Each symbol
duration n ∈ {0, . . . , N−1}, a complex symbol

√
ρuk[n] is transmitted to each user k. If the

symbols have unit energy, such that E[ |uk[n]|2 ] = 1, then the positive factor ρ/P can be called
the array gain. Denote the vector of all symbols at time n by u[n] , (u1[n], . . . , uK [n])T and
all these vectors by u , (uT[0], . . . ,uT[N−1])T. A mapping (u,H) 7→ x that ensures that the
users simultaneously receive what they should is called a precoder.

Linear precoding can be done by weighting the symbols either in the time domain by a
precoding matrix G ∈ CMN×KN :

xSC = Gu (2.35)

or in the frequency domain by a precoding matrix G̃ ∈ CMN×KN followed by a transform to
the time domain

xOFDM = FH
MG̃u. (2.36)

The time domain transmission in (2.35) is referred to as single-carrier (SC) transmission and the
frequency domain transmission in (2.36) as orthogonal frequency-division multiplexing (OFDM).
For the linear precoders considered in this document, it holds that

G = FH
MG̃FK . (2.37)

Maximum-Ratio Transmission

In maximum-ratio transmission (MRT), the precoding matrix is given by

GMRT = αMRTHH or

G̃MRT = αMRTH̃H,
(2.38)

where αMRT is a normalizing scalar. Since ‖H‖F = ‖H̃‖F, αMRT is the same in both cases.
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MRT maximizes the array gain of the transmission, but interference (undesired symbols
intended to other users) will still be present in the received signal since there is no active
interference mitigation. In typical scenarios (e.g., line-of-sight propagation and non-line-of-
sight Rayleigh fading), MRT achieves interference suppression passively with higher number
of base station antennas since the user channels are quasi-orthogonal in the limit of infinitely
many antennas [34].

Practically for SC transmission, the precoding scheme results in M different L-tap filters
that can be placed locally at each antenna, thus enabling distributed signal processing. For
OFDM, the precoding has to be done in blocks, but it can still be done locally at each antenna.

Zero-Forcing Precoding

A precoding scheme that nulls all the interference, both intersymbol interference and interuser
interference, is called zero-forcing (ZF). The precoding matrices of ZF are given by the pseudo-
inverse of the channel

GZF = αZFHH(HHH)−1 or

G̃ZF = αZFH̃H(H̃H̃H)−1,
(2.39)

where αZF is a normalizing scalar.
The main difference between ZF and MRT is the matrix inversion, which provides the desired

interference suppression. The computation of large inverses can be a major source of complexity,
which requires an efficient hardware implementation. This is further discussed in Section 4.4.1

Regularized Zero-Forcing Precoding

There also exists a regularized version of the ZF precoder, regularized zero-forcing (RZF), whose
precoding matrix is given by [10]

GRZF = αRZFHH(HHH + K
P

IKN)−1 or

G̃RZF = αRZFH̃H(H̃H̃H + K
P

IKN)−1,
(2.40)

where αRZF is a normalizing scalar. This precoder is also known as the MMSE precoder since,

among all linear precoders, it is the precoder that minimizes E
[
‖u− 1√

ρ
y‖2

]
with respect to

x and ρ ∈ R+, for unit-energy transmit vectors. The optimal linear precoder, with respect
to a given performance metric, is generally very computationally expensive to compute, but it
has a structure similar to RZF [10]; thus, RZF can be considered as the state-of-the-art linear
precoder in terms of providing high performance with a reasonable computational complexity.

Due to the block-diagonalization property (2.30), the inversion of block-circulant matrices
can be done in the frequency domain in a computationally simple way by inverting the smaller
diagonal blocks. This makes the computations in (2.39) and (2.40) feasible, both for SC and
OFDM transmission. Furthermore, in massive MIMO, not all N blocks on the diagonal have
to be inverted. It is sufficient to invert a smaller number

N ′ ≈ 50KL/M � N, (2.41)

of blocks. The number N ′, that does not depend on N , becomes smaller the more antennas the
base station is equipped with. More precisely, consider the λ-th superdiagonal block G[λ] ∈
CM×K of GZF. Simulations have shown that the energy ‖G[λ]‖2

F of the off-diagonal blocks
rapidly falls off to zero for λ /∈ [0, L−1], see Figure 2.4. Therefore, precoding with respect to a
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Figure 2.4: The normalized energy of the filter taps of a ZF precoder for SC transmission over
a frequency-selective 4-tap channel. The base station serves K = 10 users.

matrix H′ ∈ CKN ′×MN ′ of smaller dimension captures the most significant blocks close to the
diagonal and will give a good approximation of GZF and GRZF. This has two implications:

1. The computational complexity of channel inversion does not depend on the block length
in massive MIMO.

2. SC transmission with pre-equalization of the channel can be practically implemented in
massive MIMO with FIR filters with a small number of taps.

The relation in (2.41) has only been observed in simulations. Intuitively, the rapid de-
cay can be explained by studying the matrix multiplication HHH and observing that, due
to channel hardening, H[`]HH[`] ≈ MIK for i.i.d. Rayleigh fading and each element (k, k′)
in
[
H[`]HH[`′]

]
k,k′ ∼ O(

√
M), for big M and k 6= k′. The product HHH is therefore, with

high probability, a diagonally dominant band-matrix, whose inverse also should be diagonally
dominant with very small off-diagonal elements.

Energy Normalization and Control

To ensure that the power constraint on the transmit signal is fulfilled, the precoding matrices
G and G̃ have to be normalized. This is done by the factor α in (2.38), (2.39) and (2.40).
There are two ways to choose α:

1. The same α is used for all channel realizations to ensure that E[ ‖G‖2
F ] = N , so called

long-term power normalization.

2. A new α is chosen for each new channel realization to ensure that ‖G‖2
F = N , so called

short-term power normalization.

In practice, there is no reason to do long-term power normalization, because it will lead
to an increased variation in the transmit power over different channel realizations, whereas
short-term power normalization will not. In the analysis of massive MIMO, long-term power
normalization is nevertheless often assumed to simplify the mathematics, since the increase in
power variations due to long-term power normalization is small due to channel hardening.

Looking at the block-diagonal precoding matrices G̃ in OFDM, the n-th diagonal block can
be expressed as G̃[n] = (g̃1[n] · · · g̃K [n]) ∈ CM×K . The column g̃k[n] ∈ CM describes:
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1. The spatial directivity g̃k[n]
‖g̃k[n]‖ of the signal intended for user k.

2. The transmission power ‖g̃k[n]‖2 allocated for the signal intended for user k.

The MRT, ZF, and RZF precoding schemes mainly define the spatial directivities, while the
power allocation is more implicit; MRT allocates power proportionally to the short-term channel
gains (i.e., users with strong channels get more power), while ZF allocates power inversely
proportional to the short-term channel gains (i.e., users with weak channels get more power).

The transmission power on this n-th subcarrier can be modified and controlled by a diagonal
matrix P[n] = diag(p1[n], . . . , pK [n]) where pk[n] is a power allocation coefficient for user k.
Consequently, each block of the precoding matrix in OFDM is then changed to

G̃[n]P1/2[n] (2.42)

and selecting α to satisfy E
[
‖G̃‖2

F

]
= N . The channel hardening implies that P[n] can usually

be the same irrespective of n. The power allocation can be selected to maximize some perfor-
mance metric, as exemplified in the next section. Although the description above was given for
OFDM, similar power allocation concepts can be applied to SC transmission.

2.3.2 Linear precoders and power allocation

When comparing MRT, ZF and MMSE precoders, each of them is expected to provide its
optimum performance in the absence of power normalization constraints on antennas, users, or
subcarriers. This means that the pseudo-inverse or conjugate of the channel is applied without
other constraint than the total transmitted power. However, the MRT precoder was found to be
improved by applying additional power normalization constraints, especially when normalizing
the OFDM air interface over subcarriers in order to require a constant output power spectral
density, despite the reduction in degrees of freedom brought by this normalization constraint.
This effect is visible in Figure 2.5 for a 64×4 massive MIMO set-up, where the received SNR is
defined in expectation over the channel matrix assuming normalized total output power per user
and non-coherent addition of the different transmitter antennas. This SNR definition illustrates
the benefit of the beamforming gain from massive MIMO precoding, as the system can operate
close to or even below 0 dB SNR. In order to understand the role of power normalization and
further improve the MRT procoder, we have investigated how the MRT power allocation can
be optimized over subcarriers.

The objective is to minimize the BER for MRT precoding, and see how far the performance
of this simple precoder can be from the more complex ZF or MMSE precoders, in view of
optimizing the trade-off between BER performance and digital baseband complexity.

Theoretical solution

In OFDM systems, a solution to minimize the BER already existed in the literature. However,
this general solution must be adapted to the particular massive MIMO case. A BER minimiza-
tion algorithm can be found in [47]. It has be chosen as a low-complexity suboptimal solution
enabling a closed-form solution by using an approximation of the BER expression rather than
the exact BER expression. Moreover, this suboptimal algorithm is has a low implementation
complexity. This algorithm was initially developed in [47] for SIMO, assuming diversity recom-
bination (MRC) at the receiver. It works exactly in the same way for SISO as far as the power
allocation algorithm is concerned. The only difference is the different equivalent channel model
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Figure 2.5: Comparison between ZF and MRT performance, with and without power normal-
ization over antennas and subcarriers (64×4 case).

obtained in the SIMO case by combining the multiple diversity components. We summarize
this algorithm first for a single-user SISO case, before adapting it to the massive MIMO case
which for a single user corresponds to a MISO configuration.

The algorithm is based on an upper bound of the BER function:

f(αnpn) ' aQ(
√
bαnpn) ≤ a

2
exp

(
− b

2
αnpn

)
, (2.43)

where the Q-function Q(x) ,
(
1/
√

2π
) ∫∞

x
exp (−t2/2)dt while a and b are normalization con-

stants depending on the QAM constellation size Q = 2m for m bits per symbol:

a =
2(
√
Q− 1)

m
√
Q

(2.44)

b =
3

Q− 1
(2.45)

αnpn represents the SNR for the nth subcarrier; αn , |h2
n|/N0 is the ratio between the

channel gain of the nth subcarrier and the noise power, while pn is the power allocated on the
nth subcarrier. We can now substitute the upper bound of (2.43) into the Lagrange solution to
the BER minimization system, expressed as:

1

N

d

dpn
f (αnpn) + λ = 0, n = 1, 2, ..., N, (2.46)

where N is the number of subcarriers of the system. A closed-form solution can be obtained to
the system combining the N equations from (2.46) and one additional equation expressing the
total power constraint used to define the Lagrangian variable λ:

N∑
n=1

pn = NP, (2.47)
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where P denotes the average transmit power per subcarrier when the total power is equally
distributed amongst the N subcarriers. The details of the computations are not present in this
deliverable but can be found in [47]. In the solution some pn coefficients might be negative. In
that case, the Kuhn-Tucker conditions are applied and the negative coefficients are set to zero,
leading to the following solution:

pn =

{
λ0

αn
−
(

2
b

) (
1
αn

)
ln
(

1
αn

)
, αn ≥ exp

(
− bλ0

2

)
0, αn < exp

(
− bλ0

2

) , (2.48)

where λ0 satisfies the power constraint (2.47) and is thus expressed as:

λ0 =

NP +
(

2
b

) ∑
n∈S

(
1
αn

)
ln
(

1
αn

)
∑
n∈S

(
1
αn

) , (2.49)

where S is the subset containing all subcarrier indices n that meet the condition αn ≥ exp
(
− bλ0

2

)
.

Practically, the algorithm is implemented in a recursive way. In a first phase, as initialization,
λ0 is computed on all the subcarriers: the subset S contains all N subcarriers.

Once the first power coefficients pn are obtained, the recursive part of the implementation
begins: all subcarriers with negative pn value are set to zero and a new λ0 is computed with
only the subcarriers which had a positive pn in the previous iteration. This process is iterated
until no new negative power allocation coefficient is created.

Adaptation to the massive MIMO case

In the reference case [47], there is only one antenna at the transmitter and one at the receiver
(possibly after recombination for receive diversity) and thus each subcarrier has a scalar channel
response hn. However, in the massive MIMO case, the situation is different: each user has one
antenna (at the receiver side) but the transmitter has M antennas.

In the massive MIMO case, the power allocation algorithm is applied to the precoded channel,
after summation over all transmit antennas. The precoding matrix is first computed in the
usual way, i.e., by taking the conjugate transpose of the channel. Secondly, for each user,
the contributions of the M antennas including their precoding coefficients multiplied by the
corresponding channel coefficients are added in order to determine the equivalent combined
channel amplitude for that user. This equivalent channel amplitude is used as channel coefficient
hn in the power allocation algorithm. The obtained power coefficient pn is then applied to all
coefficients of the precoding matrix affecting the selected user k.

Results

The impact of the proposed power allocation algorithm (PA in this section) is shown first in
Figures 2.6, 2.7, 2.8 and 2.9 for single-user scenarios. A Rayleigh multi-tap channel has been
used in all the simulations of this section. Single-user results are selected, given that the power
allocation affects all the coefficients of a user over a given subcarrier in the same way, hence it
does not modify the cross-correlation between precoded streams of multiple users. A multi-user
validation is presented a the end of this section.

Figure 2.6 illustrates the algorithm for the SISO case. It can be seen that the power allocation
algorithm deteriorates the BER performances at low SNR, which is not a useful region (the BER
is too high), but enhances the performance of the system starting from an SNR of approximately
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15 dB, where the BER gets below 5%. This cross-over point is around 10% for multiple-antenna
cases (Figures 2.7 and 2.8). In the low SNR region, the degradation comes from the upper BER
bound (2.43) being less tight and the larger number of suppressed subcarriers due to negative
power allocation.
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Figure 2.6: BER curves for MRT precoding
with and without Power Allocation (1×1
system)
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Figure 2.7: BER curves for MRT precoding
with and without Power Allocation (2×1
system)

Figures 2.7 and 2.8 illustrate 2 × 1 and 8 × 1 systems, respectively. The optimized power
allocation strongly improves the BER performance as compared to the non-optimized case.
Figure 2.9 illustrates the fact that similar results are obtained even for a high-order constellation.
Importantly, all those simulations have been performed for uncoded scenarios. When adding
channel coding, we will revisit those conclusions in the future, as channel coding brings a
dramatic performance improvement especially for OFDM systems in the presence of frequency-
selective channels: in that case on top of the coding gain present in all systems, a diversity gain
is also obtained through channel coding.
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Figure 2.8: BER curves for MRT precoding
with and without Power Allocation (8x1
QPSK system)

−10 −5 0 5 10 15 20 25

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Comparison MRT with and without PA, 8 x 1, 256−QAM

 

 

without power allocation
with power allocation

Figure 2.9: BER curves for MRT precoding
with and without Power Allocation (8x1
256-QAM system)

Finally, Figure 2.10 compares the resulting performance to the curves of Figure 2.5 in a true
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(64×4) massive MIMO case. The power allocation scheme performs almost exactly as the MRT
curve with normalization over subcarriers and antennas. The reason is the following: by using

Figure 2.10: Positioning of power allocation result with respect to reference curves from Fig-
ure 2.5 (64×4).

the channel conjugate as a precoder, the MRT gives each precoder coefficient in the (antenna,
user, subcarrier) three-dimensional space the same amplitude as the corresponding channel
coefficient. This is proven to be optimal in the antenna dimension. Indeed, this maximizes the
received SNR thanks to the inherent maximum-ratio combining which is performed when all
antenna streams are added up at the receiver side. However, in the subcarrier dimension, no
such combination is performed, as each subcarrier is processed independently from the others.
Hence, in the uncoded case, the performance is dominated by the worst subcarriers and at high
SNR performing an inverse waterfilling is shown to be optimal [47]. This is opposite to the
capacity maximization problem where direct waterfilling is optimal.

2.3.3 Discrete-Time Constant-Envelope Precoding

The low-PAPR precoding scheme originally proposed in [36] and extended in [37,38], here called
discrete-time constant-envelope (DTCE) precoding, is briefly described in this section.

Single-Carrier Transmission

The DTCE precoder proposed in [37, 38] finds transmit signals that minimize the difference
between the received noise-free signal and the desired receive symbol under a fixed modulus
constraint:

x = arg min
|xm[n]|=M−1/2,∀m,n

‖Hx−√γu‖ , (2.50)

where γ ∈ R+ is a parameter that can be interpreted as the array gain. A low-complexity
solver to this optimization problem is given in [37]. This solver minimizes (2.50) by cyclic
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optimization: the norm is minimized with respect to one xm[n] at a time, keeping the other
variables fixed. The parameter γ can be chosen to maximize some performance metric, for
example, the sum-rate. If γ is too small, the received signal will drown in thermal noise at the
user. If γ is too big, the precoder will not be able to produce the desired symbol at the user,
which will make the norm in (2.50) excessively big.

OFDM Transmission

OFDM transmission with DTCE transmit signals can be done by using the same algorithm
as for the SC transmission but by using FH

Ku (the inverse Fourier transform of the symbols)
instead of u. It can also be done with cyclic prefix by adapting the algorithm to minimize
‖H̃FMx−√γu‖ instead. Since the prefix is cyclic the two schemes are equivalent, because

‖H̃FMx−√γu‖ = ‖Hx−√γFH
Ku‖.

2.3.4 SC Transmission vs. OFDM

Note that because of (2.37), the transmit signals of OFDM in (2.36) can be rewritten as

xOFDM = GFH
Ku. (2.51)

Thus, precoding and transmitting u with OFDM is the same as precoding and transmitting
FH
Ku with SC transmission. The massive MIMO OFDM system that has been described here

does not do waterfilling over the subchannels H̃[n]. We argue that the channel hardening
phenomenon makes every subchannel close to equally good and that the rate loss of not doing
waterfilling is negligible in massive MIMO. Analogously, one can show that a SC system with
a detector that treats intersymbol interference, which seems to be the inherent drawback of SC
transmission, as additional noise—it detects one symbol at a time and discards the possibility
to do sequence detection—gives the same performance as the OFDM system that does not do
waterfilling.

In SC transmission, the matched-filter detection is easy, the symbols are transmitted in the
time domain and the user can detect the symbols directly. In OFDM in contrast, the symbols
are transmitted in the frequency domain and the user has to await the whole OFDM symbol
to perform a Fourier transformation before detection. OFDM will cause at least a delay of N ,
since precoding and detection are done block by block. SC transmission, on the other hand, can
be implemented with FIR filters with much smaller delay in massive MIMO, as was illustrated
for ZF in Figure 2.4.

The operational differences between SC and OFDM transmission are summarized in Ta-
ble 2.1. Among the conventional linear precoders, MRT generally has the lowest implementa-
tion complexity since it only performs match filtering and a simple power scaling. Both ZF
and RZF need to invert matrices of dimensions proportional to the number of users K, with a
complexity proportional to K3, and have essentially the same operational complexity. Hence,
the higher communication performance with RZF precoding means that it is preferred over
ZF, unless ZF can be implemented in much more efficient manner. DTCE precoding has a
different architecture than the conventional linear precoeders, because it does not precompute
a precoding matrix but send every symbol vector through a non-linear algorithm. This makes
it hard to directly compare the complexity, but its complexity scales as O(MKL) operations,
which certainly makes it more scalable with K than ZF and RZF.
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2.3.5 Distortion in Power Amplifiers

Massive MIMO will require simple, inexpensive and power efficient amplifiers in the downlink
[26]. Next, a general model for power amplifiers and two distortion measures are introduced.
This theory is then used to determine how amplifiers affect the transmission in massive MIMO.

Let x(t) be the pulse shape filtered transmit signal (2.22) at one of the antennas, omitting
the antenna index for simplicity. Further, let a(t) be the non-linear amplification of x(t). A
common way to model the amplifier is to specify the AM-AM g(|x(t)|) and AM-PM conversion
Φ(|x(t)|). In this model, the amplitude and phase distortion of the amplified signal depend
only on the amplitude of the original signal, see for example [44]. The amplifier output is thus
given by

a(t) = g(|x(t)|)ej(arg x(t)+Φ(|x(t)|)), (2.52)

where j is the imaginary number.

Power Efficiency

The most basic class B amplifiers have the properties of being simple, inexpensive and power
efficient [51], and could therefore potentially be suited for massive MIMO. The power efficiency
of such an amplifier is given by [44]

η =
π

4

E[ g2(|x(t)|) ]

amax E[ g(|x(t)|) ]
, (2.53)

where amax is the highest possible output amplitude. Note that η ≤ π/4 with equality only if
the continuous-time input signal has perfectly constant envelope and the amplifier is operated
at saturation.

To avoid non-linear amplification and distortion, the signal has to be backed off2; that is,
its power has to be lowered to a suitable operation point, such that the signal amplitude most
of the time stays in a region with sufficiently linear amplification. Since back-off decreases the
efficiency, the efficiency in (2.53) is maximized by choosing the highest operation point that
still results in acceptable distortion. This choice is usually done experimentally.

In-Band Distortion

The Normalized Mean-Square-Error (NMSE) is a measure of how much amplifier-caused in-
band distortion the users experience. Similar measures for the distortion at the transmitter
are defined in [24, 44]. Let r̃ be the received signal after matched filtering and sampling (at a
random user at a random time), and let r be the signal at the same user at the same time that
would have been received if no amplification had taken place. The NMSE is then given by

NMSE ,
E[ |r̃ − λr|2 ]

E[ |λr|2 ]
. (2.54)

The amplification factor λ is chosen to minimize the power of the expected distortion

λ =
E[ r∗r̃ ]

E[ |r|2 ]
. (2.55)

2In this document, a back-off b means that the amplifier is operated at a fraction b below the 1-dB compression
point—the point, where the output signal is 1 dB weaker than what it would have been if the amplification had
been perfectly linear.
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Figure 2.11: The power spectral densities after amplification of two signal types with PA
operation at the 1 dB compression point and with PA operation well below saturation. The
signals are from the system described in Table 2.2.

Out-of-Band Radiation

The out-of-band radiation can been quantified by the Adjacent Channel Leakage Ratio (ACLR),
which is defined in terms of the power P[−B/2,B/2] of the power spectral density Sa(f) of a(t) in
the useful band and the powers P[−3B/2,−B/2], P[B/2,3B/2] in the immediately adjacent bands:

ACLR , max

(
P[−3B/2,−B/2]

P[−B/2,B/2]

,
P[B/2,3B/2]

P[−B/2,B/2]

)
, (2.56)

where

PB ,
∫
f∈B

Sa(f)df. (2.57)

The bandwidth B is the band occupied by the ideal signal after pulse shape filtering. For
example, if a root-raised cosine filter with roll-off β has been used, then B = 1 + β (in units of
the symbol rate).

In Figure 2.11, four power spectral densities are shown. Half the in-band spectrum is shown
together with the whole right band. It can be seen that the signals that have not been backed
off radiate more power into the right band than the backed off signals.

2.3.6 Comparison of Precoding Schemes

Next, the precoding schemes will be compared in terms of power efficiency and distortion. A
simple amplifier model is the Rapp model [44]. In this model, the phase distortion is neglected,
so Φ(|x|) = 0, ∀|x|, and the amplitude conversion is given by

g(|x|) = amax
|x|/xmax

(1 + (|x|/xmax)2p)
1
2p

, (2.58)

where the parameter p = 2 approximates a typical moderate-cost solid-state PA [5]. The pa-
rameter amax is the maximum output amplitude and xmax = amax/g

′(0) determines the slope of
the asymptote that g(|x|) approaches for small |x|. Here xmax = M−1/2 and amax = xmax

√
P/λ0,

where λ0 is the amplification factor (2.55) when amax = xmax. The correction factor 1/λ0 is
determined by the signal type and the back-off, it is chosen such that the total radiated power
is P .

To see how this non-linear power amplifier affects the transmission, the system specified in
Table 2.2 was simulated for different back-offs.
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Table 2.2: Simulation Parameters

Number of tx-antennas M = 100
Number of users K = 10 and 50
Channel L = 4-tap Rayleigh fading
Power delay profile hkm[`] ∼ CN (0, 1/L) i.i.d.
Pulse shape filter Root-raised cosine, roll-off 0.22
Amplifier Class B, see (2.53) and (2.58)

Figure 2.12: Received signal points after symbols from a 16-QAM constellation have been
broadcast with 2.2 dB back-off and non-linear amplification over a MIMO channel by SC ZF
precoding. The black dots show the desired symbols. The left plot shows a small MIMO system
with 4 base station antennas serving 1 user. The right plot shows a massive MIMO system
with 100 base station antennas serving 10 users.

Expected Power Efficiency and Distortion

In SISO and MIMO OFDM systems, the in-band distortion, seen at the users, is uncorrelated
to the desired symbol, which means that the distortion can be regarded as uncorrelated ad-
ditive noise [14]. In massive MIMO, a similar effect is observed—the noise can be treated as
uncorrelated and additive for SC transmission too. Figure 2.12 shows the distribution of the
distortion in two MIMO systems that use SC transmission. In the small MIMO system, the
distortion is differently distributed for different constellation points. In the massive MIMO
system, however, the distortion has approximately the same distribution for all constellation
points. Since the precoded transmit signals are the sums of many independent symbols and the
receive signals are the sums of many different transmit signals, it is intuitively understandable
that the in-band distortion should be uncorrelated with any single symbol.

The efficiency in (2.53) was computed for several back-offs and averaged over different channel
realizations. By treating the back-off as an intermediate variable, the NMSE can be given as a
function of the efficiency, see Figure 2.14(a). Note that the efficiency is not a simple function
of the back-off, but depends on the signal type.

Similarly, the ACLR was computed for several back-offs and averaged over different channel
realizations. It can be seen in Figure 2.14(b) that the amount of energy radiated out-of-band is
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monotonically decreasing with the back-off. A constraint on the ACLR will therefore constrain
the maximum efficiency that the amplifier can operate at.

Because of their similar amplitude distributions, all the linear precoding schemes resulted
in the same curves in both Figure 2.14(a) and 2.14(b). Therefore, only the results of OFDM
MRT and ZF precoding are shown.

2.3.7 Consumed Power in Amplifiers

Using SC or OFDM transmission makes no significant difference on performance in massive
MIMO. SC transmission was chosen for the DTCE scheme to show the feasibility of SC trans-
mission in massive MIMO.

Let Pcons be the power that the amplifier consumes and η be its efficiency. An achievable
rate is then given by

R = max
γ,η

log2

(
1 +

ηPconsG

ηPcons(I +D(η)) + 1

)
, (2.59)

where the maximization is over η ∈ [0, ηmax], where ηmax is the efficiency that corresponds to
operating point of the amplifier with the maximum allowed out-of-band radiation. The array
gain G and interference I will be functions of the transmit power P = ηPcons and thus η, when
RZF is used, and of the parameter γ when DTCE precoding is used. These functions have to be
established through simulations. Note that the optimization is only done over γ when DTCE
precoding is used, for the other precoders, the optimization is done over the single variable η.
For MRT and ZF precoding, the array gain and interference are given by [48,67]

G =

{
M/K, for MRT

(M −K)/K, for ZF
(2.60)

and

I =

{
1, for MRT

0, for ZF
. (2.61)

The relation in (2.59) thus constitutes a function between the power Pcons that the amplifiers
consume and the data rate requirement R.

Evaluating (2.59) for the system specified in Table 2.2 for different Pcons, gives the estimated
base station power consumption shown in Figure 2.14. It can be seen that maximum-ratio
precoding works well for low rate requirements but is limited by interference to below a certain
maximum rate. Further, it can be seen that RZF and ZF perform equally well when the number
of users is small, but RZF has an advantage when the number of users is big.

DTCE precoding consumes more power than the optimal conventional precoder when the
out-of-band radiation is not constrained, but seems to consume approximately the same amount
of power in the range 1-2 bpcu per user. In the comparison, it is important to remember that
different bounds have been used for the conventional and DTCE precoders and that the rate
expression of the DTCE precoder might be pessimistic for low data rates.

The value of η that corresponds to the optimal operating point of the amplifiers is shown in
Figure 2.15. When there is no constraint on the out-of-band radiation, it is optimal to operate
the amplifiers at saturation for low rate requirements. For higher rate requirements, the am-
plifiers should be backed off to lower the in-band distortion. When the ACLR is constrained to
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Figure 2.13: Some measurements of NMSE and ACLR for a Rapp-modelled (p = 2) class B
amplifier with three signal types. The signals have been pulse shape filtered with a root-raised
cosine, roll-off factor β = 0.22. The encircled points correspond to some selected operating
points of the amplifier specified by the back-off from the 1-dB compression point.
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Figure 2.14: The estimated consumed power of a base station with M = 100 antennas required
to serve K = 10 (above) and K = 50 (below) users with R bpcu over a frequency-selective
channel with L = 4 taps with and without a constraint on the ACLR.
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Figure 2.15: The power efficiency of the amplifiers at the optimal operating point for different
sum-rate requirements. The legend in Figure 2.14 also applies here.

below −45 dB, the optimal efficiency of the amplifiers is ηmax, i.e. 34 % for DTCE precoding
and 26 % for maximum-ratio and ZF precoding, over the whole range of required rates inves-
tigated, both when serving 10 and 50 users. This corresponds to a back-off of 8 dB and 12 dB
respectively.

Finally, notice that only conventional ZF and RZF precoders were considered in this section.
A third option is to modify the linear precoding to reduce the PAPR. For example, a feasible
hardware implementation of PAPR reduction of linear precoders, based on antenna reservation,
is described in Section 4.4.2.

2.4 Uplink detection

Each base station can use its multitude of antennas for phase-coherent receive combining,
based on the acquired CSI. For simplicity in exposition, it is assumed in this section that
the channel estimation in Section 2.2 provides the true channels. The receive combining can
adaptively amplify desired signals and can reject interfering signals. Since the downlink and
uplink transmissions in TDD systems take place over the same reciprocal channels, the same
rates are typically achievable in both directions—this is known as uplink-downlink duality
[8, 11, 64]. A key insight from the duality theory for linear processing is that power allocation
needs to be used in the downlink, while the normalized precoding vector for a user in the
downlink can be used as receive combining vector in the uplink. For this reason, the three main
precoding schemes described in Section (2.3) (e.g., MRT, ZF, and RZF) have direct counterparts
in the uplink detection.

Based on the input-output relation of the downlink channel in (2.26), we have the reciprocal
counterpart

r =

√
P

K
HHz + w, (2.62)

where is the block-circulant KN×MN -matrix H defined in (2.25). The transmitted signals
from the K users at time n ∈ [0, N − 1] are defined as z[n] , (z1[n], . . . , zK [n])T, where
E[|zk[n]|2] = 1, and are gathered in the vector

z , (zT[0], . . . , zT[N − 1])T. (2.63)
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Since the transmitted symbols are normalized, it is the factor P/K that determines the transmit
power level per user. Note that P represents the total uplink transmit power normalized by
the noise variance, and can take another value than the corresponding P in the downlink.

Similarly, the M -antenna array at the base stations receives signals r[n] , (r1[n], . . . , rM [n])T

at time n ∈ [0, N − 1] and these are gathered in

r , (rT[0], . . . , rT[N − 1])T, (2.64)

while the zero-mean white Gaussian noise over the N time instants is

w , (wT[0] · · · wT[N − 1])T ∼ CN (0, IMN). (2.65)

By using a cyclic prefix as in Section 2.3, (2.62) is also easily given in the frequency do-
main. Let F ∈ CN×N be the N -point discrete Fourier transform (DFT) transform with

1√
N
e−j2π(n−1)(n′−1)/N on its (n, n′)-th position and define the two unitary matrices FK , F⊗ IK

and FM , F⊗ IM . Recall from (2.30) that

H̃H = FMHHFH
K (2.66)

is the block-diagonal matrix, whose diagonal blocks

H̃H[n] =
1√
N

L−1∑
`=0

HH[`]ej2π`n/N , n = 0, . . . , N − 1, (2.67)

are the DFTs of {HH[`]}. Let

z̃ , (z̃T[0], . . . , z̃T[N − 1])T= FMz (2.68)

r̃ , (r̃T[0], . . . , r̃T[N − 1])T = FNr (2.69)

be the DFTs of the uplink transmit and receive signals, respectively. The relation between z̃
and r̃ is then

r̃[n] =
√
P H̃H[n]z̃[n] + ñ[n], n = 0, . . . , N − 1, (2.70)

where ñ[n] ∼ CN (0, IM).

2.4.1 Linear Receive Combining

Since we have M ≥ K in massive MIMO scenarios, the base stations have more observations
in r̃[n] ∈ CM than there are unknown signals in z̃[n] ∈ CK . When detecting the signal from
user k, the base station can use the M degrees of freedom to amplify the desired signal and/or
reject interfering signals from other users.

The computationally efficient linear receive combining schemes are based on selecting a
matrix C ∈ CMN×KN in the time domain and weight the received signals as

ẑSC = CHr (2.71)

so that ẑSC is similar to the transmitted time domain signal z. Depending on which metric that
is used to measure the similarity between ẑSC and z, different receive combining schemes arise.

MAMMOET D3.1 Page 27 of 78



First assessment of baseband processing requirements for MaMi systems

In the frequency domain, a receive combining matrix C̃ ∈ CMN×KN is preceded by a transform
to the time domain

z̃OFDM = C̃HFMr (2.72)

As in the downlink in Section 2.3, the time domain transmission is referred to as single-carrier
(SC) transmission and the frequency domain transmission as orthogonal frequency-division
multiplexing (OFDM). For the linear receive combining matrices considered in this document,
it holds that

C = FH
KC̃FM . (2.73)

2.4.2 Three Receive Combining Schemes

The uplink counterpart to MRT is called maximum-ratio combining (MRC) and the combining
matrix is given by

CMRC = µMRCHH or

C̃MRC = µMRCH̃H,
(2.74)

where the normalizing scalar µMRC is not strictly needed (since the combining matrices are
not subject to any power constraint) but can be useful to control the arithmetic range of the
combined signals. Similar to MRT, MRC maximizes the array gain, but interference (undesired
symbols intended to other users) will still be present in the combined signal since there is no
active interference mitigation.

The ZF precoder has a direct counterpart in the ZF combiner, where the combining matrix
is given by

CZF = µZFHH(HHH)−1 or

C̃ZF = µZFH̃H(H̃H̃H)−1,
(2.75)

where µZF is an optional normalizing scalar. This receive combining scheme nulls all the in-
terference, both intersymbol interference and interuser interference, by sacrificing part of the
array gain.

Finally, the MMSE receive combining matrix is given by

CMMSE = µMMSEHH(HHH + K
P

IKN)−1 or

C̃MMSE = µMMSEH̃H(H̃H̃H + K
P

IKN)−1,
(2.76)

for some optional scalar µMMSE. As the name suggests, this receive combining minimizes the
mean squared error between the transmitted signals z and the processed received signal ẑSC

(and similarly in the frequency domain) for µMMSE = 1. This scheme is directly related to the
RZF precoder.

The strong relationship between linear transmit precoding and linear receive combining
implies that one typically have C = G (or C̃ = G̃), where the equality holds at least up to a
scaling factor. Hence, the base station does not have to compute the precoder G and the receive
combiner C separately, but only one of them—which reduces the computational complexity.
The hardware implementation of precoding and combining is further discussed in Section 4.4.
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2.5 Pilot and user scheduling

The quality of the channel estimation depends both on the SNR and on the level of inter-cell
interference. More precisely, the channel estimation error covariance matrix in (2.20) in Section
2.2 can be rewritten as

Cjlk = plkβjlk

(
1− plkβjlkB∑J

`=1

∑K
m=1 p`mβj`mvH

ilk
vi`m +N0

)
IM , (2.77)

which emphasizes that the error depends only on the noise variance N0 (as compared to the
effective channel variance plkβjlk), on the pilot length B, and on UEs that have been allocated
the same pilot signal; that is, which of the products vH

ilk
vi`m that are non-zero. Consequently,

the allocation of pilots across cells can have an important impact on the performance and there
should preferably be a large difference in variances between users that reuse the same pilots.
Since each BS is mainly interested in the channels to users in its own cell, this means that BS
j would like to allocate orthogonal pilots among the users in each cell (this requires B ≥ K)
and also make sure that the ratio βjjk/βj`m between the intra-cell variance βjjk to its kth user
and the inter-cell variance βj`m to user m in cell ` is large enough. This principle has been
illustrated for one-dimensional networks in [28] and for two-dimensional networks with strong
spatial correlation in [27,68], but there is certainly a need to develop new algorithms and scalable
pilot allocation algorithms for practical networks that cannot rely on spatial correlation.

A simple and robust pilot allocation allocation was recently proposed in [9], based on classical
cell planning for regular networks with hexagonal cells [16]. The idea is to have a B = αK
pilot signals, where α ≥ 1 is the pilot reuse factor and, thus, every cell uses only the fraction
1/α of the pilot signals. The worst-case ratio βjjk/βj`m is 0 dB for α = 1, while it becomes
approximately 11 dB for α = 3 and 18 dB for α = 7 [45]. The average-case ratio might be much
larger than this; particularly if one avoids to schedule cell edge users at the same time in the
cells. These improvements in channel estimation quality seems to be worthwhile, because [9]
shows that the highest spectral efficiency is usually achieved for 3 ≤ α ≤ 7.

2.5.1 Essence of Pilot Contamination

Although the LMMSE estimator in (2.17) allows for estimation of all channel vectors in the
complete network, each BS can only resolve B different spatial dimensions in non-line-of-sight
propagation since there are only B orthogonal pilot signals. To show this explicitly, we define
the M ×B matrix

ĤV,j =
[(

vH

1 Ψ−1
j ⊗ IM

)
vec(Ỹj), . . . ,

(
vH

BΨ−1
j ⊗ IM

)
vec(Ỹj)

]
(2.78)

using each of the B pilot signals from V . The channel estimate in (2.17) for UE k in cell l is

parallel to the ilkth column of ĤV,j; more precisely, if h̄jlk = 0 then we have

ĥeff
jlk = plkβjlkĤV,jeilk (2.79)

where ei denotes the ith column of the B × B identity matrix IB. This is the essence of pilot
contamination; BSs cannot tell apart UEs that use the same pilot signal and thus cannot reject
the corresponding interference. In some cases (e.g., for slow changes in the user scheduling
and high spatial channel correlation), user-specific statistical prior knowledge can be utilized
to partially separate the UEs [68], but this will not be considered herein since we aim at
establishing fundamental system properties that can be reliable applied in any propagation
setup.
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2.5.2 Mobility and Pilot Sharing

Each user might have different dimensions of its coherence block, defined by some coherence
time T̃c and coherence bandwidth W̃c, depending on the propagation environment and mobility.
Suppose that T̃c = aTc and W̃c = bWc for a certain UE, where a ≥ 1 and b ≥ 1 since the frame
structure was defined to fit into the coherence block of all UEs. Then, τ = bacbbc is the total
number of frames that fits into the coherence block of this particular UE. If τ > 1, there is
no need to transmit pilots in every frame; it sufficient to send pilots in 1/τ of the frames.
Consequently, multiple UEs with τ > 1 can share a pilot signal without disturbing one another
if the pilot is transmitted in different frames.

2.6 SC-FDE and OFDM with Precoding

2.6.1 Comparison of OFDM and SC-FDE combined with precoding

This section provides an overview of the possible modulation schemes for massive MIMO pre-
coding. The assumption is that individual symbols from classical constellations (e.g. M-PSK
or M-QAM) are transmitted. In other word, we do not address here modulation schemes
with memory such as continuous phase modulation. Since the focus of this section is on the
modulation scheme, we will do most of the discussions and mathematical representations for
the SISO case, for clarity and when relevant. Indeed, for the MIMO case, we can most often
straightforwardly extend the model to a “block” model with block-circulant, block-diagonal and
block-Fourier matrices as introduced in the beginning of Section 2.3. Specific MIMO consider-
ations will be added when needed. We will also neglect the receiver noise to make equations
clearer.

Pure SC vs block transmission

There are two basic approaches to transmit sequences of symbols:

1. pure single carrier, in which a long sequence of symbols are transmitted in the time-
domain. This is a pure time-domain approach; in case of multipath, the receiver usually
mitigates inter-symbol interference by means of a time-domain equalizer in the form of
a linear feedforward equalizer or a more complex decision-feedback equalizer consisting
of a feedforward and a feedback section. The discrete-time baseband equivalent model is
simply for the received signal

y[n] = h[n] ∗ u[n] (2.80)

and for the signal equalized with a feedforward equalizer e[n]:

û[n] = e[n] ∗ h[n] ∗ u[n] (2.81)

2. block transmission, in which the sequence of symbols is split into blocks of equal length N .
A linear transformation can be applied on each block individually (for example but not
necessarily a discrete inverse Fourier transform) and a length L guard interval comprising
L symbols is prepended so that, if the channel length is smaller than L, the inter-block
interference can be perfectly eliminated by discarding the received guard interval at the
receiver. In most systems, the guard interval also plays the role of a cyclic extension,
which enables simple frequency-domain equalization. We will discuss various types of
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cyclic extension in detail below. The received signal vector y[n] and the equalized signal
vector û[n] are given by:

y[n] = H[n]u[n] (2.82)

û[n] = E[n]H[n]u[n] (2.83)

in which H[n] has size (N +L−1)×N and E[n], the equalizer matrix, has size N × (N +
L− 1).

Block transmission options and cyclic extension options

OFDM and SC-FDE. OFDM is probably the most well-known and most widely used block
transmission scheme. It takes a block of N symbols, performs an IFFT of this block, adds a
length L cyclic extension (note here that extension is more general than prefix ) and transmits
the resulting time-domain signal. At the receiver, the cyclic extension is removed and the
signal is converted to the frequency domain (FD) for per sub-carrier equalization. SC-FDE
is less common but is now in use in two prominent wireless standards (uplink of LTE/LTE-
advanced [3] and IEEE802.11ad [20]). In SC-FDE, a block of N time-domain symbols receives
directly a length L cyclic extension. The resulting length N + L block is transmitted. At the
receiver, the following operations are performed: an FFT, a per sub-carrier equalization and
an IFFT.

Details of the cyclic extension. There are three common forms of cyclic extensions that
are widely used and/or documented in the literature and that apply to OFDM and SC-FDE:
cyclic prefix (CP), known symbol padding (KSP) and zero-padding (ZP).

Cyclic prefix. The cyclic prefix technique consists in taking the last L symbols or samples
of a block and copying them in front of the block. Mathematically, the OFDM scheme with
the cyclic prefix can be expressed as follows (u is the vector of information symbols and x is
the vector of transmitted signals):

x = TCPFHu (2.84)

r = HTCPFHu (2.85)

û = ẼFRCPHTCPFHu,

û = ẼFH̆FHu,

û = ẼH̃u

(2.86)

where the size (N + L) × N matrix TCP and size N × (N + L) matrix RCP are the matrices
inserting and removing the cyclic prefix, the size (N + L)× (N + L) matrix H is the Toeplitz
channel convolution matrix and F is a Fourier matrix. Note that the matrix H̆ = TCPHTCP

is circulant and that it is diagonalized by the Fourier matrix resulting in H̃ = FH̆FH . Both
the FD channel matrix H̃ and the FD equalizer matrix Ẽ diagonal, which implies simple
implementation of the equalizer.

The CP scheme can be used as such with SC-FDE. The system model can be written as
follows:

û = FHẼFRCPHTCPu,

û = FHẼFH̆FHFu,

û = FHẼH̃Fu

(2.87)
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Matrices Ẽ and H̃ are identical to those in (2.86). Note that the matrix F in (2.87) appears
from mathematical transformations but is not implemented at the TX side. The RX side,
however needs to implement both an FFT and an IFFT. The FFT/IFFT size in CP-OFDM
and CP-SC is the size of the block N , before adding the CP.

Known symbol padding. The KSP technique consists in appending always the same cyclic
extension to all blocks instead of prepending some data symbols or samples. We will illustrate
this for the SC-FDE case. The transmitted block of symbols consists of N data symbols and a
length L vector of known symbols p which is the same for all blocks:

x =

[
u
p

]
. (2.88)

We need to consider the inter-block interference (IBI) channel matrix model [65] to introduce
this cyclic scheme. The signal from the current block but including the interference from the
previous block is as follows:

r = HIBI

[
0N×1

p

]
+ H

[
u
p

]
,

r = H̆

[
u
p

]
.

(2.89)

Hence, the effect of the known symbol padding results also in a circulant channel matrix H̆ and
the same receiver processing as in (2.87) can be applied for the FD equalization. An interesting
feature of the KSP scheme is that, because the cyclic extension is known by the receiver,
it can be used by the receiver after equalization for processing such as channel tracking or
carrier/phase tracking. The FFT/IFFT size in KSP-SC is the size of the block N augmented
with the cyclic extension length L. Thus it has size N + L.

The KSP scheme can in principle be used with OFDM (it is used in the DTMB broadcasting
standard [59]). However, there is an inherent added complexity in KSP-OFDM which is that
the length over which the channel appears circulant is N + L whereas the FD OFDM symbols
are encoded with a size N FFT. Hence, the receiver needs to perform a size N + L FFT,
equalization and IFFT followed by a size N FFT to recover the frequency domain symbols. It
is therefore very complex at the receive side since it involves three (I)FFTs.

Other cyclic extension schemes. For the sake of completeness, we have to mention two
other cyclic extension schemes: zero-padding (ZP) and unique-word OFDM (UW-OFDM). ZP
can be applied to SC-FDE and OFDM. There are several receiver alternatives for ZP [41].
One of the drawbacks of ZP is that the transmitter amplitude varies sharply during the cyclic
extension, which is not a desirable feature. Another major drawback is that, although the ZP
symbols can be seen as a form of KSP (“zero” amplitude known symbols), they cannot be used
for tracking purposes. Hence, additional overhead is needed for pilot signals.

UW-OFDM reserves certain frequency domain symbols to ensure that, after the IFFT, the
first N samples of the time-domain signal are forced to a fixed sequence of N symbols (a sort
of KSP but enforced in the frequency domain). This technique is very complex because the
symbols that must be sent on the reserved tones are data-dependent and the complexity is
significant for large FFT sizes.

Conclusion for the OFDM and SC-FDE schemes without precoding. The most
attractive schemes for SISO without precoding are the CP-OFDM, CP-SC-FDE and KSP-
SC-FDE. Without precoding, KSP-SC-FDE is preferred over CP-SC-FDE because it provides
training symbols for free with each block. In the next section, we will see how these schemes
can be used for (MIMO) precoding.
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Figure 2.16: OFDM transmission block diagram.

Block Transmission and Precoding

Still assuming a SISO system, the FD precoding consists in pre-multiplying each transmitted
block with a diagonal FD precoding matrix to pre-compensate the channel response. We will
now go over the three preferred schemes (CP-OFDM, CP-SC-FDE and KSP-SC-FDE) and see
how they can be used with precoding and MIMO.

Precoding with CP-OFDM. Precoding with CP-OFDM is straightforward. It can be
represented as follows:

û = ẼFRCPHTCPFHG̃u,

û = ẼFH̆FHG̃u,

û = ẼH̃G̃u

(2.90)

We end up with diagonal matrices at the TX and RX side and a diagonal channel matrix thanks
to the cyclic prefix. This can be directly extended to MIMO precoding with block matrices,
hence simple per-sub-carrier precoding and RX equalization.

The OFDM transmission block diagram is illustrated in Figure 2.16, highlighting the (I)FFT
blocks.

Precoding with CP-SC-FDE. Precoding with CP-SC-FDE is similarly straightforward.
It can be represented as follows (neglecting the receiver noise):

û = FHẼFRCPHTCPFHG̃Fu,

û = FHẼFH̆FHG̃Fu,

û = FHẼH̃G̃Fu

(2.91)

Compared to the SC-FDE case without precoding, we have here additional processing due
to the FFT, diagonal precoding matrix and IFFT. Since it involves diagonal matrices, this
scheme can also straightforwardly be extended to MIMO set-ups with block matrices and per
sub-carrier operation. The down side is that we need two FFT/IFFT at both the TX and RX,
hence the complexity is a bit higher.

The SC-FDE transmission block diagram is illustrated in Figure 2.17, highlighting the
(I)FFT blocks.
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Figure 2.17: SC-FDE transmission block diagram.

Precoding with KSP-SC-FDE. For the precoding with KSP, the question arises as to
where the KS must be appended at the TX side: before or after the precoding. Let us investigate
both cases.

If the KS is appended after the precoding, the TX model reads:

x =

[
FHG̃Fu

p

]
(2.92)

This will indeed make the propagation channel matrix circulant but the channel seen by the
receiver also includes the precoder (upper part of the bracketed expression in (2.92) which is
not made circulant. Clearly, this does not work.

If the KS is inserted before the precoding, the TX model can be written as:

x = FHG̃F

[
u
p

]
(2.93)

The transmitted signal in (2.93) will in general not have the desired structure of (2.88) which,
for KSP-SC-FDE without precoding, made the channel appear to be circulant. A possible work
around would be to compute a different value for p in (2.93) such that the TX signal x does
have the structure of (2.88). This could be achieved as follows, by splitting the Fourier matrix
into two parts (the columns multiplying u are collected in Fd and the columns multiplying p′

are collected in Fp′ : [
s′

p

]
= FHG̃F

[
u
p′

]
[
s′

p

]
=

[
FH
d

FH
p

]
G̃
[
Fd Fp

] [u
p′

] (2.94)

The vector p′ can then be calculated as:

p′ = (FH
p G̃Fp)

−1(p− FH
p G̃Fdu) (2.95)

This scheme is not very attractive because the complexity is already significant in this SISO
derivation. In a MIMO set-up, it would become even more complex with block matrices. The
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vector p′ is data dependent and, hence, must be recalculated for every block. A final argument
against this approach is that the vector p, which is artificially enforced after the precoding, does
not undergo the same channel as the data vector u. Hence, after RX equalization, p cannot
be used directly for tracking. It should be noted that this approach is actually similar to the
approach in UW-OFDM mentioned earlier in which we also concluded that it was too complex
for practical systems.

Conclusion for cyclic extension. Block transmission for SISO or MIMO precoding is only
viable using the cyclic prefix as a cyclic extension. KSP, although better when no precoding is
applied, is too complex when precoding is applied because the known symbol cannot easily be
appended to the block, neither before nor after the precoding. Comparing CP-OFDM and CP-
SC-FDE, the latter is slightly more complex because two FFT/IFFTs are needed at both the
TX and RX sides, against only one FFT/IFFT at both sides for CP-OFDM. Since FFTs can
be implemented quite efficiently in deeply scaled CMOS technology, this complexity increase
is moderate and other criteria will need to be evaluated to decide between CP-OFDM and
CP-SC-FDE.

An argument in favor of CP-SC-FDE is that, if the channel is sufficiently pre-equalized
by the precoding, the receiver ”sees” a frequency flat channel and the RX FD equalization is
possibly not needed; a simple time-domain equalizer with one or a very small amount of taps
could be used at RX. This can be decided at design time or at run time.

2.6.2 SC Precoding without Cyclic Prefix

When no cyclic prefix is used, we need to use the convolution model to represent to channel
effect and the precoding/equalization processes. This can be done as follows.

SISO SC precoding

The discrete-time baseband equivalent model of the precoded signal is

s[n] = h[n] ∗ g[n] ∗ d[n]. (2.96)

In a MIMO set-up, this would become

x[n] = H[n] ∗ (G[n] ∗ u[n]) (2.97)

where H[n] and (G[n] are matrices of impulse responses (each entry of the matrix is an impulse
response).

SISO and MIMO SC MRT precoders

A possible precoding scheme is to resort to MRT; in this case, the SISO precoder is

g[n] = h∗[T − n] (2.98)

and the MIMO precoder is
G[n] = HH [T − n]. (2.99)

in which we have introduced a delay T , greater than the channel length, to have causal pre-
coders. This is just the transmit matched filter in the time-domain which is basically the
complex-conjugate time-reversed of each impulse response appearing in the channel matrix H.

It should be noted that we have not introduced a normalizing factor in these time-reversal
precoders but it may be needed. Concerning implementation, a key point here is the impulse
responses appearing in the precoder equations can be very long and that, implementation-wise,
this can be challenging since it implies long FIR filters with programmable coefficients.
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SISO and MIMO SC ZF precoders

For ZF SC precoders, we need to switch to a model with convolution matrices so that we can
manipulate the matrices to compute e.g. inverses. For a SISO system, (2.96) becomes

x[n] = HGu[n] (2.100)

where H and G are Toeplitz convolution matrices, with the impulse response h[n] and g[n]
repeated in all columns with an index shift. If the impulse response h[n] has length T and
the vector u[n] contains N symbols, the convolution matrix H has size (N + T − 1)×N if no
precoding is applied. If a precoder g[n] of length S is applied, then G has size (N +S− 1)×N
and H has size (N + S + T − 2) × (N + S − 1). Stricto sensu, this is also a block model as
in Section 2.6 but it is not a block transmission scheme that eliminates inter-block interference
by design (without equalizer).

The ZF precoder G can be computed as the pseudo-inverse of G = H†. If it is used in this
way, it cannot be implemented as a convolution with an FIR filter because, G is not Toeplitz.
A more implementation friendly solution is to take the central column of G. This column
implements a zero-forcing solution with the strongest response at an index corresponding to
the chosen column index. It should be noted that, if the pseudo-inverse is computed on the
baseband rate convolution matrix (thus without oversampling), the zero-forcing solution needs
a very large number of taps for near-zero sidelobes. A much shorter response can be achieved
with an oversampling factor of 2.

The size of the channel convolution matrix can be quite large (depending on the length of
the channel impulse response); hence, the computation of G can be complex.

For a MIMO system, we still have a transmit model of the form

xM [n] = HMGMuM [n] (2.101)

but here HM and GM are block Toeplitz matrices and xM [n] and uM [n] are vectors resulting
from the concatenation of the TX and RX vectors, respectively, of the different users. For
large MIMO systems, this approach is impractical because of the very large size of the channel
convolution matrix HM that has to be inverted. Even for an MRT transmitter, the number of
multiplications involved in the product GMuM is extremely large.

2.6.3 Power amplifier effect on OFDM and SC-FDE

We will analyze the effect of the power amplifier on OFDM and SC-FDE from the perspective
of the BER and the PAPR.

BER analysis

We ran downlink simulations with 16QAM symbols and K = 4 users and M = 4, 8, 16 and
32 antennas. Different levels of back-off (with respect to the 1-dB compression point) were
applied. The precoding scheme was zero-forcing. The results are shown in Figure 2.18 and 2.19
for OFDM and SC-FDE, respectively. A quick inspection of Figure 2.18 and 2.19 reveals that:

• both systems have very similar performances without PA non-linearity

• the PA impact is similar on both systems,

• both systems are very sensitive to PA non-linearities at full system load. They do not
work properly for 0 or 3dB back-off,
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Figure 2.18: BER performance for OFDM 16QAM (circles: no PA; squares: PA 0dB back-off;
triangles: PA 3dB back-off).
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Figure 2.19: BER performance for OFDM 16QAM (circles: no PA; squares: PA 0dB back-off;
triangles: PA 3dB back-off).

MAMMOET D3.1 Page 37 of 78



First assessment of baseband processing requirements for MaMi systems

0 2 4 6 8 10 12 14 16 18
10

−2

10
−1

10
0

CCDF of SC−FDE and OFDM without precoding and r=0.2

P

P
ro

ba
bi

lit
y(

P
A

P
R

>
P

)

 

 
SCFDE−BPSK
SCFDE−QPSK
SCFDE−16−QAM
SCFDE−64−QAM
OFDM−BPSK
OFDM−QPSK
OFDM−16−QAM
OFDM−64−QAM

Figure 2.20: PAPR for OFDM and SCFDE without precoding.

• both systems can be operated at half system load if sufficient back-off is applied (3 dB or
more),

• from 25% system load and below, very little back-off is needed.

This confirms the ”averaging” effect of non-idealities when they are uncorrelated. It is in-
teresting to note that one of the advantages of SC-FDE over OFDM in SISO systems - the
lower sensitivity to PA non-linearity - is lost with precoding. This is due to the fact that the
FD precoding destroys the good PAPR property of SC modulation, especially for low order
constellations.

PAPR analysis

We can confirm the BER impact analysis by looking at the PAPR complementary cumulative
distribution function (CCDF) of CP-SC-FDE and CP-OFDM with and without precoding,
which are shown in Figure 2.20 for the case without precoding and in Figure 2.21 for the case
with precoding (ZF, 4 users, 32 TX antennas). We observe that the PAPR advantage of SC-
FDE without precoding completely vanishes when precoding is applied. We have verified this
for other load scenarios (100%, 50% and 25%): the PAPR CCDF are almost identical to the
results shown in Figure 2.21.

2.6.4 Conclusions

The key conclusions of this section are as folows. CP is the only viable cyclic extension option
for OFDM and SC-FDE when precoding is applied. Precoded CP-OFDM and CP-SC-FDE
have very similar BER performance under ideal conditions and very similar BER performance
degradation when PA non-linearity is applied. The ”averaging” effect on the non-linearity
degradation is clearly visible when the system load is not too high (<25%) and the PAPR of
precoded CP-OFDM and CP-SC-FDE are very similar. Pure SC precoding without CP has a
reasonable complexity for MRT precoding but cannot be realistically implemented for ZF or
MMSE precoding. CP-SC-FDE needs two (I)FFTs at TX side; it also needs two (I)FFTs at
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Figure 2.21: PAPR for OFDM and SCFDE with precoding, ZF, 4 users, 32 TX antennas.

RX side if an RX equalizer is needed. Interestingly, the RX equalizer for CP-SC-FDE may not
be needed if the channel is pre-equalized (i.e. made frequency flat) by the TX precoding; this
can save significant terminal side complexity.
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Chapter 3

Processing hardware

In this chapter, we present isolated hardware components or building blocks that can be used
in order to perform specific massive MIMO DSP operations, as well as platforms combining
a number of those components at a higher level in order to provide the complete required
functionality.

3.1 Hardware components and accelerators

When hardware components have to be designed or selected in order to support a given func-
tionality, multiple dimensions come into play, with conflicting high-level objectives:

• Cost (including silicon area impact)

• Power consumption (peak as well as low-load or sleeping)

• Flexibility (covering multiple modes or standards)

• Throughput (data processing speed)

• Time to market

As far as digital sub-components are concerned, the following categories are available, with
specific advantages as well as drawbacks.

ASICs are specialized integrated circuits designed for a well-defined application. They are
best in power consumption as well as throughput, thanks to very specific design optimziation.
Their main drawback is the lack of flexibility they offer. Their cost is low per unit but very large
as overhead (design and NRE, masks. . . ). This is especially the case in the latest deeply-scaled
technologies. Hence, they are only relevant for mass production.

FPGAs offer programmability based on pre-structured hardware templates that can be
tuned in order to reproduce any functional behavior. While being more expensive than ASICs
and less power-efficient, they offer a very convenient flexibility for prototyping, and also strongly
reduce the overhead of ASICs when targeting a faster design at lower risk.

DSPs are the most generic components for signal processing. Hence, they offer a lot of
flexibility and a very fast time-to-market, given that only software programming is needed.
However, they are much less efficient than other components in power consumption, and also
suffer from a lower throughput due to the overhead of being generic.

ASIPs are more recent than the other categories. They are processors, offering flexibility as
DSPs do, but tuned to a specific domain of application. This enables a much more optimized
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design, reaching throughput and power consumption figures closer to the ASIC designs, while
keeping the necessary flexibility in the targeted domain of application.

At platform level, software-defined radios (SDRs) offer an advantageous flexibility as
described in Section 3.2.1. If they are custom designed for massive MIMO they can use hybrid
architectures, combining multiple of the above components in order to get exactly the required
flexibility and performance while minimizing cost, time-to-market and power consumption.

3.2 Massive MIMO platforms

3.2.1 SDR architectures

A key technology that enables seamless wireless connectivity in a flexible way is Software Defined
Radio (SDR). A software defined radio is a wireless communication system in which some of
the functionality is implemented on a programmable and/or reconfigurable platform [35,53].

The importance of SDR solutions is driven by two facts. First, to enable seamless connec-
tivity the mobile devices have to support communications to various wireless networks such
as GSM, WCDMA, LTE, WiFi (IEEE 802.11a/b/g/n/ac) or Bluetooth [31]. In a traditional
approach, each standard is implemented using a dedicated ASIC. However, supporting multiple
standards using dedicated ASICs results in a costly design in terms of power and area. Besides,
all the standards are not active simultaneously all the time, so having a dedicated chip for each
standard is an over-designed system. Thus, a more cost-effective solution is to have a flexible
architecture that can support multiple standards and can switch between them over time.

Figure 3.1: Evolution of wireless standards over the past 15 years [55].

Secondly, the number of wireless standards is evolving at a tremendous rate in order to satisfy
the ever growing user demands and application scenarios. According to Edholm’s law [13], the
data rate of communications increases about 100 times every 10 years. Figure 3.1 shows the
evolution of WLAN and cellular wireless standards, illustrating that almost every 5 years there
is a new wireless standard being proposed and within each standard new releases are drafted
almost every year [33]. For instance, after the release of 3GPP-LTE Rel. 8 in 2008, the 3GPP
standard body has released significantly new features every year or two: Rel. 10 in 2011, Rel. 11

MAMMOET D3.1 Page 41 of 78



First assessment of baseband processing requirements for MaMi systems

in 2012, Rel. 12 in 2014 and currently work is under progress for Rel. 13 [1]. Such a fast evolution
makes SDR a very attractive solution, as it enables to reuse software and hardware architecture
templates. Ideally, with a programmable architecture, new releases of a current standard can
be updated by a software upgrade and only major changes require the introduction of a new
chip. As a result time-to-market can be reduced and the time-in-market can be increased. This
is beneficial not only for mobile devices, but also for infrastructure such as base stations, for
which hardware updates are very costly operations.

As an example, both industry and academia have spent a significant effort in MIMO-SDR
design. Given that MIMO-OFDM is the underlying technology in LTE and 802.11n/ac, an
SDR solution can ideally be designed to support both standards. However, creating practical
SDR baseband solutions providing high flexibility, reusability, and a high energy efficiency still
remains a significant challenge. This requires MIMO baseband signal processing algorithms to
be implemented on programmable architectures. The area and energy efficiency of such pro-
grammable architectures is typically much lower than ASIC, simply because ASICs are designed
and optimized for a fixed functionality. An SDR baseband processor has a lot of overhead in
order to enable programmability, such as an instruction decoder, instruction memory hierar-
chy, programmable interconnect, general purpose data memory and various functional units
to support many different baseband algorithms. However, this efficiency gap can be reduced
by implementing scalable algorithms that can adapt to the varying channel conditions or user
requirements. In short, scalable algorithms providing multiple modes of operations to trade-off
bit-error-rate (BER) performance and computational complexity are required, to increase the
average efficiency of the system.

3.2.2 State of the art of SDR baseband processors

In order to meet the programmability and flexibility requirements of SDR solutions, many com-
panies and universities have proposed programmable baseband processors. In general there is
no agreed benchmark set in industry or academia to evaluate and compare SDR solutions [4].
For instance, a particular SDR solution might support both GSM and LTE standards while
another one supports DVB-T/H and 802.11a standards, so a common benchmark cannot be set.
Moreover, within each standard different algorithms can be employed for the same signal pro-
cessing task, which can differ in BER performance, throughput, power and area requirements.
Therefore, we are limited to give an overview of different SDR architectures. The purpose of
this state-of-the-art overview is to familiarize the reader with the trends in architecture de-
sign of SDR baseband solutions. As proposed in [4], SDR architectures can be categorised
into three different types: 1) DSP centered with hardware accelerators, 2) Multi-core and 3)
Reconfigurable coarse grain arrays (CGA).

DSP centered with hardware accelerators

LeoCore by CoreSonic [32] is an ASIP for baseband processing targeting hand held devices.
It is a processor centered design with SIMD cores or ASIC accelerators. In LeoCore the al-
gorithms are evaluated for complexity and required operations and then mapped to suitable
SIMD cores. It has been demonstrated for DVB-T/H and WiMax implementation. It delivers
a throughput of 31.67 Mbps with 70 mW power consumption.
Sandblaster by SandBridge [60] is a multi-core multi-threaded vector processor. The main
focus in their work has been the support of high level language and compiler optimization for
DSP applications. The compiler analyses the C code and appropriately generates the SIMD
vector operation to enable DLP. The chip SB3500 has 3 cores, each capable of executing SIMD
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instructions with 4 threads. It has been demonstrated with implementation of 2× 2 LTE Cat.
2 baseband processing.
ConnX BBE by Tensilica [57] is an SIMD processor with VLIW instructions. It uses
Tensilica’s Xtensa processor template to generate a baseband processor. Different processor
configurations according to the application requirements can be generated using the Xtensa
Processor Generator and Tensilica Instruction Extension (TIE). The ConnX baseband engine
(BBE) has been synthesized for 65 nm and runs at 400 MHz. Essentially it is a VLIW processor
with SIMD instructions, the differentiating factor is that TIE can automatically vectorize the
code with little or no human intervention.
EVP by NXP [6] is a VLIW processor supporting both scalar and vector operations. The
main data path supports 16 bit operations while 8 and 32 bit operations are also supported
on EVP (Embedded Vector Processor). The application code is written in EVP-C which is an
extension of ANSI-C. It has been demonstrated for a MMSE MIMO detector implementation
for 2×2 802.11n standard [46]. The core can run at 300 MHz with 300 mW power consumption
when synthesized for 90 nm.

Multi-core architectures

SODA [30] is a multi-core processor with separate processors for data and control operations.
The data processor has 4 PE (Processing Elements) that supports both scalar and vector op-
erations. 32 bit wide SIMD with 16 bit data width are used in each PE. The data processor
executes computationally intensive kernels like FFT, FEC kernels and equalization while the
control processor performs system operations and manages the data processor. In SODA (sig-
nal processing of demand), inter-kernel data communication is enabled by a global scratch pad
memory. It has been demonstrated for the implementation of complete physical layer of W-
CDMA and 802.11a standards [30]. The power consumption is 450 mW for 90 nm technology.
Ardbeg by ARM [66] is a commercial prototype based on SODA designed by ARM. The
main changes in Ardbeg compared to SODA consist of an optimized wide SIMD design, related
VLIW support for SIMD instructions and algorithm specific hardware acceleration. Ardbeg is
also a multicore architecture, with a control processor and multiple PEs. Special ASIC accel-
erators are added for specific algorithms like turbo encoding/decoding. Each PE has a local
scratch pad memory and shares a global memory as well. C-language support is provided which
can take the C model directly from Matlab for compilation. It runs at 350 MHz in 90 nm tech-
nology, and dissipates 500 mW. This is demonstrated with the implementation of major kernels
in DVB-T/H, W-CDMA and 802.11a [66].
Tomahawk 2 [43] is a multiprocessor System-on-Chip (MPSoC) with a heterogeneous array of
PEs. As many other solutions it also exploits instruction, data and task level parallelism. The
MPSoC has 8 Duo-PEs and dedicated units for MIMO detection and decoding. Each Duo-PE
comprises a vector DSP and a RISC core, connected to a shared local memory. The distinguish-
ing factor in Tomahawk 2 is its dynamic run-time manager (CoreManage, CM) which adapts
to the dynamically varying workload of wireless applications. The CM analyses at runtime
the scheduling requests and exploits the results to maximize data locality and to configure
the dynamic voltage and frequency scaling (DVFS) of the PEs according to current system
load, priorities and deadlines [43]. To accelerate computationally intensive SDR baseband al-
gorithms, two programmable application-specific cores perform MIMO detection and FEC. It
has been demonstrated to support LTE, WiMax and 802.11n. For 4× 4 MIMO LTE baseband
it achieves a throughput of 396 Mbps with 74.6 mW power dissipation running at 445 MHz.
X-Gold by Infineon [54] is a multi-processor SDR that combines an SIMD sub-system for
physical layer signal processing and an ARM sub-system for control and communication to

MAMMOET D3.1 Page 43 of 78



First assessment of baseband processing requirements for MaMi systems

upper layers [52]. The SIMD sub-system has 3 SIMD clusters and each SIMD cluster has 4
SIMD cores which can be programmed individually. Furthermore, each SIMD core has 4 PEs
for vector operations. To execute standard specific algorithms that do not require flexibility
such as Viterbi/turbo decoding, hardware accelerators are provided. The SDR20 instance has
been fabricated in a 65 nm process and can be clocked at 300 MHz. It has been demonstrated
to support GSM, UMTS Rel. 99, and 2 × 2 LTE downlink [52] while it is also claimed to be
software upgradable to support 802.11a/b/g/n and DVB-T/H [2].

Reconfigurable coarse grain array architectures

Montium by Recore Systems [18] is a coarse grain array architecture supporting both fixed
point and floating point operations. The FUs in Montium are arranged as tiles and connected
by 10 global buses to provide the interconnect flexibility. The distinguishing feature of Montium
is its multi-level ALU. Each ALU has two levels, one for general purpose computing and another
for specific functions like FFT and filtering. These levels can be bypassed according to the needs
of the algorithm. It has been demonstrated to support various algorithms such as, correlation,
FIR filtering, DCT and FFT [18]. It comes with its own design tool called Montium Sensation
Suite which has a compiler, a simulator and an editor. The compiler uses its proprietary
language called Montium Configuration Design Language (CDL) for reconfiguration. It is
demonstrated with implementation of W-CDMA and HiperLan2 [17].
HERS [42] stands for HEterogeneous Reconfigurable System. The basic idea is to divide
and distribute the kernels (algorithms) among the reconfigurable engines (REs) based on the
required computations. Each RE further consists of homogeneous PEs, optimized for specific
operations. The PEs are connected as 8× 8 array. To provide the inter-engine communication
there is a high speed bus. In [42] it is demonstrated with the implementation of DVB-T/H and
802.11a/g, by employing 2 REs. It can be clocked at 250 MHz when synthesized using 90 nm
technology.
ADRES by IMEC [12] is a reconfigurable CGA processor designed with the Dynamically
Reconfigurable Embedded Systems Compiler (DRESC) tool suite. The platform consist of
VLIW FUs and a CGA. SIMD operations are supported on the CGA while VLIW performs
scalar operations. It can be operated in a VLIW mode or as a CGA processor and it can switch
between the modes at run-time. The CGA can be reconfigured to support different array sizes
up to 4 × 4 and SIMD widths. The architecture is C-programmable and the code is compiled
with the DRESC compiler. Special intrinsics functions can be designed required by a specific
algorithm which are then implemented by the DRESC compiler. The processor, designed in
90 nm process achieves a clock frequency of 400 MHz in worst case conditions and consumes
maximally 310 mW. The mapping of complete baseband processing required in 4×4 LTE Cat.5
is demonstrated in [29] for an advanced MIMO receiver using an ADRES instance with 2 cores.

Although the SDR processors differ a lot in the architecture style, they are fundamentally
programmable processors providing DLP, ILP and TLP. This requires algorithms that are
specifically designed to exploit parallelism and scalability. Many wireless standards have been
demonstrated with SDR implementation. However, the power consumption of these imple-
mentations is still relatively high as compared to ASIC-based solutions. Therefore, there is a
clear need of designing MIMO detection algorithms that can be implemented on SDR proces-
sors while providing a near-optimal BER performance, high throughput and high area/energy
efficiency comparable to ASIC/FPGA design.
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Figure 3.2: Hierarchical Overview of the LuMaMi testbed BS.

3.2.3 FPGA-based LuMaMi testbed

When exploring real-life opportunities and limitations of massive MIMO, at an early develop-
ment stage, it is beneficial to have a high degree of freedom to make adjustments. A massive
MIMO FPGA array system can provide such a freedom, while processing performance is high
enough for real-time operation. Plenty of different architecture choices may be made. Here, a
tree-architecture approach will be discussed.

Generic star architecture

A generic star-architecture may be employed as seen in Figure 3.2. A central controller, respon-
sible for upper-layer protocol implementation, link evaluation, radio interfacing, bit-file deploy-
ment builds the starting point connecting to switches on the leafs. Through these switches the
central controller sources and sinks user data, e.g. HD video stream and performs link quality
evaluation using metrics like BER, EVM etc.

The switches on the other hand connect to SDRs routing data between central controlling
unit and SDRs using, e.g. DMA transfers. Instead of applying several switches as shown in
Figure 3.2, a suitable big switch connecting to all SDRs may be used. However, both setup
should, additionally to streaming between central unit and SDR, support peer-to-peer streaming
between different SDRs to allow flexibility in distribution of processing blocks.
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Table 3.1: Components of LuMaMi

Generic Component Amount

Central Controller NI PXIe-8135 1

Switch NI 1085 PXIe 4

SDR NI USRP-RIO 2943R 50

Antenna Array In-house developed 1

Each SDR on the BS serves either one or several antennas depending on the actual number
of RF chains integrated. Special attention has to be paid to (1) streaming rate limits between
all components, (2) maximum parallel input/output streaming links in the devices, especially
the SDRs and (3) maximum aggregated data rate inside the switches.

Hierarchical structure of LuMaMi testbed BS

Following aforementioned tree structure approach, the LuMaMi (Lund University Massive
MIMO) testbed [21] was developed in cooperation with National Instruments. Mapping of
the generic entities to actual implemented hardware components is shown in Table 3.1. As
central controller implementing the interface to the BS, an NI PXIe-8135 without real-time
calculation capability, running 64-bit Windows 7 was implemented. Three switches, NI 1085
PXIe, each connecting up to 18 USRP-RIO 2943R with the central controlling unit allowing
overall support of 50 SDRs are incorporated. Each USRP-RIO SDR provides two RF-chains
serving up to 40 MHz bandwidth and tuneable center frequency from 1.2 GHz to 6 GHz while
delivering maximum transmit power of 15 dBm. This setup supports 100 antenna elements at
the BS. An in-house developed antenna array, supporting different antenna array arrangements
with 160 dual-polarized elements connects to the BS to wirelessly transmit and receive data.

Inherent property of the tree architecture is the distributed processing requirement since
no centralized processing node is available. To remedy this requirement and to add higher
flexibility, the central controlling unit itself was placed in a switch which concedes addition of
parallel co-processing FPGAs at the central architecture node.

All interconnections between components are limited by different maximum streaming rates.
Interconnection from central controller to switches allows 3.2 Gbps bidirectional traffic whereas
the SDRs connect with up to 800 Mbps shared among 13 available DMA channels. Each slot in
the switches handles up to 3.2 Gbps bidirectional traffic with aggregated total traffic of 32 Gbps.
Additional co-processor FPGA units, implemented by NI PXIe-7976R, handle up to 3.2 Gbps
bidirectional streaming rate on up to 32 channels.

Figure 3.3 shows the assembled LuMaMi testbed BS.

3.3 Flexibility requirements

In this section we investigate the requirements that are most critical for the selection and design
of a MaMi digital baseband platform. Especially, the need for flexibility is dominant in the
decision process.
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Figure 3.3: Assembled LuMaMi Testbed BS.

3.3.1 Prototyping requirements

For prototyping, the needs are clearly specific as compared to final product design. The domi-
nant focus is on flexibility, in order to be able to efficiently test multiple solutions and optimize
them. Time to market is also an asset when using flexible platforms, i.e., building on software
development instead of hardware development in order to speed up the exploration phase.

The prototyping platform needs to be built from existing hardware components. Dedicated
hardware components might be designed as part of prototyping some components for key func-
tionality, but such components cannot be used when building the exploration platform. This is
even more the case when exploring a system as complex as a MaMi base station, where many
high-speed data streams across many antennas have to be processed in real-time, and platform
assembly from proven state-of-the-art components is already challenging enough.

As a consequence, as illustrated in Section 3.2.3, state-of-the-art SDR platforms building
mostly on FPGAs as well as possibly DSP co-processors have to be used and assembled into a
demonstrator platform, in order to maximize the flexibility and exploration speed required in
such a study.

3.3.2 Product requirements

The hardware selection for a final product is expected to sacrifice a bit in flexibility in order to
gain in cost and power efficiency of the final design. The difficult part is to evaluate how much
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flexibility should still be present in such a product.
Run-time flexibility is needed in order to address multiple expected scenarios, for example

changes in number of users, system load, signal constellations, user scheduling, etc. One ap-
proach is to design the system for the worst-case, and make it possible to down-scale when
the peak performance is not needed. If this is supported by a flexible platform, it can lead
to power savings when not operating under the peak conditions, while a static design would
unnecessarily burn power by always operating at maximum complexity. Another approach is
to target a performance which is not worst-case along all the dimensions. For example, the
system might not operate simultaneously at maximum number of antennas and users, at full
load, with the highest spectral efficiency and the largest mobility, but reconfigure depending
on which one is most demanding. This approach is often acceptable for a user device, which
may either provide the fastest throughput or support high-mobility, depending on conditions,
while the full worst-case would lead to overdesign. However, it is less likely to be an acceptable
trade-off for a base station which is expected to provide a specified level of performance on all
the relevant metrics, whatever the operating conditions.

Next to run-time flexibility, reconfigurability can also be relevant in order to adapt to modi-
fications in the communication standard and air interface definition. Especially for a technique
as recent as massive MIMO, for which no agreed communication standard exists yet, early de-
ployment will need to build on flexible hardware in order to support the expected modifications
to come. On the other hand, keeping too much flexibility in the system would prevent the
design from being sufficiently cheap, power-efficient, and powerful enough in terms of required
processing.

For those reasons, we expect the first implementations of baseband signal processing for
MaMi to rely on SDRs or other reconfigurable platforms, combining specific accelerators for
the most critical operations with more generic reconfigurable components such as FPGAs. The
specific components performing those critical operations could be dedicated ASIPs where the
functional scope is clear enough to allow for such a design. In the longer term, a second
generation of base stations could benefit from the experience gained and target more custom
hardware in order to further cut down on costs and power consumption.

3.3.3 Signal processing operations for the main air interfaces

In order to identify implementation bottlenecks and select hardware accordingly, we have to
assess the expected functionality and quantify its complexity.

Three main air interfaces can be identified for massive MIMO. The first one is OFDM,
where MaMi precoding/decoding is applied at subcarrier level. The second one is SC with
FD precoding; it presents a number of similarities with the OFDM case, but requires a few
more FFTs. The expected benefit is a lower PAPR of the transmitted signals. The third one
is fully operated in time domain, building on time-reversal; its main drawback is that only
MRT/MRC processing is possible, but it can provide a more efficient implementation for that
specific processing type.

A number of functional operations have to be performed for any air interface, such as
channel encoding/decoding, constellation mapping/demapping, up-/down-sampling and trans-
mit/receive filtering, etc. Some other operations are only present in some of the air interfaces,
such as FFT/IFFT for SC and OFDM solutions. Finally, some operations will have a differ-
ent form depending on the selected air interface, such as channel estimation, precoding, and
combining which could be implemented in time-domain or frequency-domain, possibly com-
bined with PAPR reduction techniques. Compensation of some non-idealities from the analog
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front-end may also be implemented either in time domain or in frequency domain.
In this project we will quantify the complexity of those functional blocks in order to determine

the implementation bottlenecks and hence select hardware accordingly.
A last element concerns the decision between centralized processing and distributed process-

ing, i.e., whether to use a large central processing unit or to perform most of the DSP operations
at the level of the different antennas. This has implications on the overall platform design, al-
ready in the case of a co-located antenna array due to the overhead of interfacing the different
components, but even much more in case of distributed antenna system, which is a possible
architecture for MaMi systems. This constraint can impact the choice of an air interface and
linear processing scheme, given that some processing schemes such as MRT/MRC are more
easily implemented in a distributed way while the ZF or MMSE schemes require centralized
processing.
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Chapter 4

Algorithm/hardware mapping

One of the important steps in the process of realizing massive MIMO is to decide how al-
gorithms, such as those discussed in Chapter 2, are best mapped onto hardware to strike a
good balance between flexibility and complexity/energy efficiency. This is one of the core
tasks of the MAMMOET project and much of the work is still in its infancy. The description
below is therefore based on giving several different points of view, from estimation of power
consumption in the digital processing of massive MIMO, a discussion on algorithm-platform
co-design/co-optimization, and detailed experiences when implementing massive MIMO in the
largely FPGA-based LuMaMi testbed to specific examples of hardware accelerators developed
for massive MIMO precoding.

4.1 Algorithmic operations and digital power consump-

tion

Given the fundamental differences between massive MIMO base stations and traditional (macro)
base stations, estimating the power consumption of such a base station requires a significant
modeling effort, taking into account the different components in order to assess the overall
system power consumption and its energy efficiency. In [15] a global power modeling approach
for a massive MIMO base stations was presented. The corresponding power modeling approach
is described in the MAMMOET deliverable D1.1 on System scenarios and requirements specifi-
cations, as part of the presentation of the relevant metrics and scaling rules in order to evaluate
massive MIMO systems. In this section of deliverable D3.1, we focus on the way to exploit the
approach of [15] specifically towards modeling the the baseband signal processing complexity
and power consumption.

Digital components can be modeled by counting the number of floating-point operations
performed and translating the results into power consumption figures. This is one of the
possible power modeling approaches for digital signal processing. This approach is often selected
as it represents a fair trade-off between modeling effort and modeling accuracy, which can be
estimated to be a factor 2× to 10× off from the actual power consumption, depending on the
effort spent and the accuracy of the assumptions used. Simpler power modeling techniques
would not provide any useful absolute results but only coarse relative comparisons. On the
other hand, getting very accurate power modeling results, less than a factor 2x off from the
actual power consumption, require much more modeling effort. For most complex systems,
this is only possible by going through the complete design of the digital platform and in case
of programmable hardware the complete mapping flow as well. This amount of effort is not
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Table 4.1: Reference complexity of digital sub-components, per antenna and per user for 20 MHz
and 6 bps/Hz (64-QAM, coding rate 1).

Subcomponent Downlink Uplink Estimation
[GOPS] [GOPS] [GOPS]

Filtering 6.7 6.7 6.7
Up/Down-sampling 2 2 2

FFT/IFFT 0.5 0.5 0.5
MIMO processing .04 .04 0
Synchronization 0 2 0

Channel estimation 0 0 .01
OFDM Mod/Demod 1.3 2.7 2.7
Mapping/Demapping 1.3 2.7 2.7

Channel coding 1.3 8 0

Control 2.7 1 1
Network 8 5.3 0

feasible at the level of pre-design system and platform exploration.
Reference complexity values Ci,ref are provided in Table 4.1. Those values estimate the num-

ber of billion complex floating-point arithmetic operations required per second for each specific
digital signal processing block. The average power consumption will be obtained by weighted
averaging between downlink, uplink and pilot transmission (channel estimation) phases, based
on the frame definition. The values in the table have already been multiplied by an overhead
factor in order to take into account the data transfers (memories and registers) which play a
large role in the power consumption of digital systems. This factor has been selected at a value
of 2.5, hence not only arithmetic operations are taken into account.

The reference scenario does not need to be representative of massive MIMO scenarios. For
example, the reference value of 6 bps/Hz is most likely too large for massive MIMO systems,
but the model was designed such that it can scale complexity and power consumption values
according to the selected scenario, hence the outcome will correspond to the desired scenario.

Reference values for filtering, up/down-sampling, synchronization, modulation/demodulation,
mapping/demapping and channel coding are taken as similar to small base stations in a ref-
erence scenario. The idea is that the performance expectations are similar for massive MIMO
systems as for small cell base stations, while large base stations suffer from more overhead.
Specific values are introduced for massive MIMO specific components, i.e., FFT/IFFT, MIMO
precoding/combining and channel estimation. Those are estimated based on [67]. They are fur-
ther scaled in order to match the reference scenario of Table 4.1, i.e., per-antenna and per-user
numbers assuming 6 bps/Hz and 20 MHz. FFTs are used in all phases of the frame; precoding
is used in downlink but also as detection matched filter in uplink. Finally, channel estimation
is used in pilot transmission phase only. A MRT is assumed, which requires no additional
computations besides estimating the channel, i.e., no need for matrix inversion.

Per antenna and per user, the reference complexity values for specific massive MIMO com-
ponents are relatively small. However, the precoding and channel estimation terms scale up
linearly with both the number of antennas and the number of users, while most other digital
sub-components only scale with one of the two, as can be seen from Table 4.2. This makes
the massive MIMO specific terms relatively more important when scaled up to a realistic sce-
nario. This scaling with input parameters is applied as follows, denoting IBaseband the set of
sub-components i (filtering, up/down-sampling. . . ), XBaseband the set of scenario parameters x
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having each a reference value xref and an actual value xact, si,x the scaling exponent for sub-
component i with respect to parameter x, Pi,ref the reference power of sub-component i and
PBaseband the computed total digital power:

PBaseband =
∑

i∈IBaseband

Pi,ref

∏
x∈XBaseband

(
xact

xref

)si,x
(4.1)

Scenario parameters x ∈ XBaseband = {W, SEu,M,Υ, K,Q} are the system bandwidth W ,
spectral efficiency per user SEu (function of constellation order and coding rate), number of
BS antennas M , system load Υ (in frequency-domain), number of users K, and the digital
quantization Q (number of bits/word). In the reference case of Table 4.1, reference parameters
are set to 20 MHz for bandwidth, 6 bps/Hz for spectral efficiency, 1 for BS antennas and users
given that reference values are provided per antenna and per user, and 1 for the (full) load.

In order to obtain reference power values Pi,ref, The last step is to convert complexity numbers
Ci,ref into power consumption. The proposed approach is based on an average intrinsic efficiency
ηBaseband in GOPS/W, i.e., Pi,ref = Ci,ref/ηBaseband. The reference conversion factor is set to
ηBaseband = 8 GOPS/W for the year 2010, assuming dedicated hardware components which
are more efficient than general-purpose ones. It assumes a reference quantization parameter
of 24 bits/word. This factor increases when a reduced accuracy is required, which is the case
for massive MIMO: the quantization parameter Q actually improves the intrinsic hardware
efficiency factor ηBaseband thanks to simpler operations, while the other scenario parameters such
as number of users or antennas influence the number of GOPS to perform. Next to reduced
quantization, extrapolation to future technology generations is a second way to improve the
hardware efficiency. It is applied by considering a factor 2 improvement every 2 years thanks
to silicon technology evolution, which is a conservative estimate taking into account Moores’s
law as well as the more and more complex technological challenges in order to keep the benefits
from technology scaling.

A remaining essential digital scaling parameter is quantization. Indeed, the selected reso-
lution of digital computations impacts their power consumption severely. Unlike the reference
scenario of Table 4.1 and the related intrinsic efficiency ηBaseband, the average required resolution
for a massive MIMO system is expected to be only 4 bits, in contrast with large and small cell
base stations modeled to use an average of 24 and 16 bits, respectively. Massive MIMO systems
tolerate such a low resolution because the many antennas average out the impairments caused
by the limited accuracy of individual antenna chains. This low resolution results in a significant
reduction in power consumption, thanks to the scaling with respect to quantization parameter.

Next to the digital signal processing as such, some additional digital functions are required
in a complete system. They perform platform control (activating different parts of the system,
managing data flow, . . . ), network processing (higher-layer protocols) and backhauling to the
core network. Control and network processing are modeled similarly to the digital baseband
components. The corresponding numbers are provided at the bottom of tables 4.1 and 4.2.

In future deliverables we will revisit the complexity tables and reference values selected
in order to model the baseband power consumption in view of the selected system scenarios
and functional algorithms within MAMMOET and provide a closer assessment of the expected
digital power consumption in the project.
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Table 4.2: Scaling exponents si,x for digital sub-components, as function of the bandwidth (W ),
spectral efficiency per user (SEu), number of antennas (M), system load (Υ), number of users
and digital quantization resolution (Q).

Sub-component Bandwidth SE/user BS antennas Load UEs Quantization
Notation W SEu M Υ K Q
Filtering 1 0 1 0 0 1.2

Up/Down-sampling 1 0 1 0 0 1.2
FFT/IFFT 1.2 0 1 0 0 1.2

MIMO precoding 1 0 1 1 1 1.2
Synchronization 0 0 1 0 0 1.2

Channel estimation 1 0 1 .5 1 1.2
OFDM Mod/Demod 1 0 1 .5 0 1.2
Mapping/Demapping 1 1.5 0 1 1 1.2

Channel coding 1 1 0 1 1 1.2

Control 0 0 .5 0 .2 .2
Network 1 1 0 1 0 0

4.2 Algorithm-platform co-design and co-optimization

The design of a wireless baseband platform starts from a set of specifications from the wireless
standard. These specifications define certain performance objectives that have to be met in both
functionality and implementation. In terms of functionality, the minimum and peak throughput
requirement and the BER or PER set by the wireless standard are the most important ones. In
terms of implementation, these specifications have to be met with the highest possible energy
and chip area efficiency. Therefore, wireless baseband design poses a significantly difficult
challenge, i.e., to find a solution that achieves low BER performance with low chip area and
high energy efficiency while still providing flexibility and programmability. This is true for SDR
platforms in general but also more specifically for dedicated wireless processors of ASIPs. In
general, flexibility, low chip area and high energy efficiency are conflicting design objectives.
To achieve the goal of meeting performance requirements under power and area constraints,
we use a system level design approach considering both the algorithm and architecture. The
main software/hardware optimizations applied in this approach are shown in Figure 4.1 and
are detailed below.

Data and Instruction Level Parallelism

Although, different SDR baseband processors differ from each other in many aspects, they are
essentially parallel programmable processors. The majority of the SDR baseband processors
are Very Long Instruction Word (VLIW) processors that provide data level parallelism (DLP)
with Single Instruction Multiple Data (SIMD) operations, instruction level parallelism (ILP)
and task level parallelism (TLP). This multiple level parallelism can potentially provide high
throughput with a moderate chip area and high energy efficiency. However, in practice most
of the signal processing algorithms are designed keeping functionality aspects in mind while
details on exploiting parallelism are often ignored. If an algorithm with an indeterministic data
and control flow is implemented on a processor providing DLP/ILP, the hardware resources
will be under utilized and the end results would be an inefficient implementation. Hence, both
DLP/ILP parallelism have to be explicitly enabled at the first stage of the design flow, during
algorithm design, to avoid problems in the subsequent design stages (Figure 4.1).
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Figure 4.1: Design flow for algorithm and architecture co-design targeting SDR baseband solu-
tions.

For instance, considering a VLIW processor with SIMD operations, MIMO detection can be
implemented with several algorithms, providing different BER performance. The sphere detec-
tor is known to provide near-optimal performance, with a low memory requirement. However,
it cannot be efficiently implemented on a parallel processor due to its indeterministic data-flow.
In contrast, the K-best algorithm has a larger memory requirement, but thanks to its deter-
ministic flow it can exploit parallelism which can lead to an energy efficient implementation.
Algorithm design choices at the highest level can be used to determine the architecture features,
such as, DLP (SIMD width), memory requirements, memory access, arithmetic operators, etc.

Run Time Scalability

SDR baseband processors are programmable such that the multiplexing of data path and mem-
ory is more flexible than in ASICs. Exploiting this flexibility to increase average energy efficiency
requires scalable algorithms that can adapt to the varying wireless channel and the user require-
ments. For instance, when the SNR is high even a sub-optimal MIMO detector can provide a
good enough BER performance, whereas at low SNR a near-optimal MIMO detector is required.
Obviously, this impacts the required power for processing and hence energy efficiency. Such
dynamic features can be exploited in the SDR baseband to reduce the energy efficiency gap to
ASICs. We can do so by using software parameters such as a scalable threshold value to enable
early termination of an algorithm, adjusting the number of iterations, or using exit conditions
extracted from the wireless channel. Run-time scalable algorithms can operated in multiple
modes providing a trade-off between BER performance, throughput and energy efficiency. To
enable such scalability effectively, design considerations have to be made in both the algorithm
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and the architecture.

Design Time Scalability

SDR baseband processors are usually template-based so that with the release of a new wireless
standard the template can be reconfigured to support the new release. Design time scalability is
enabled so that algorithms can be easily reconfigured, by changing a few parameters, to support
various standards or modes within a standard and even different architecture instances. Generic
baseband algorithms can be designed for implementation on programmable VLIW/SIMD pro-
cessors, which can eventually reduce the design time cost. Common features such as the number
of iterations and DLP can be kept scalable to provide design time reconfigurability.

Fixed Point Quantization

Fixed point quantization is another important aspect of the overall system design. Data of
signal processing algorithms is often represented by fixed point integers in baseband platforms.
Numerical stability and the word length requirements have to be particularly considered as
this can influence both the functionality aspect as well as the power consumption and area
of the design. A particular algorithm that might have a lower complexity in terms of the
number of operations but be numerically unstable. For example, the ZF equalizer computation
can be implemented with the direct inversion of the Gramian of the channel matrix, with a
Gaussian elimination, or by first performing a QR decomposition of the channel matrix and
then using back substitution to calculate the inverse. The Gaussian elimination requires the
least operations but it is numerically unstable; this problem is strongly improved by including
minor pivoting, but it makes the flow non-deterministic and hence less easy to parallelize. On
the other hand, QR-based inversion offers the best numerical stability and has a smaller word
length requirement. The choice of word length (or data type) for a particular signal can lead to
potential opportunities of operator decomposition, which essentially determines the design area
and power. For instance, if a signal can be represented by 4 bits instead of 16 bits, a multiplier
can be replaced by simple bit-shift-add operations. Therefore, fixed point quantization is an
important aspect considered during the algorithm design.

Application Specific Instructions

In many cases, baseband algorithms are designed to be implemented on a pre-designed baseband
architecture. If the design is based on an architecture template tuning the architecture to sup-
port specific algorithms or a class of algorithms, it can potentially bring significant gains. This
requires creating application specific instructions (ASIs). In order to achieve a high throughput
with low chip area and high energy efficiency, ASIs should be based on low cost arithmetic op-
erators. The design of an ASI is closely linked to the type of arithmetic operators, word length
requirements and the structure of the algorithm. Decomposing complex arithmetic operations
into simplified equivalent or sometimes approximate operations, can potentially bring a gain in
energy efficiency at a low or negligible performance degradation cost. For instance, multipli-
cation can be decomposed into shift-add operations which enable low area and energy efficient
implementation. Generally, ASIs should be designed in such a way that they can be used for
various computations in the same algorithm or even for multiple algorithms. For example, if
division is followed by a rounding operation to a finite set of integers, then it can be imple-
mented by bit-shift and comparison to the integer set. In this way both division and round
operation can be avoided and only one ASI for the bit-shift and comparison would need to be
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implemented. The choice of operators during algorithm design is very crucial to the ASIs. In
order to deliver the maximum potential of ASIs, they need to be enabled during the algorithm
design at the Matlab level and not only at the C code level just before mapping.

Memory Layout/Access

Another important aspect that is considered throughout this section is the deterministic data
flow of the algorithms that significantly influence memory layout and access. For instance,
an algorithm with a reduced number of memory accesses might not result in an efficient im-
plementation if the memory elements are accessed in an un-predictable or irregular manner.
In contrast, a regular data flow and deterministic memory access pattern might lead to an
efficient implementation even with a higher number of accesses. These considerations about
memory access are considered during the algorithm design because it is tightly coupled with the
supported architecture features such as, SIMD, memory layout and address generation. The
proposed algorithms in this thesis are explicitly optimized to have a deterministic and regular
memory access.

4.3 Mapping of Massive MIMO System into the FPGA-

based Platform

In this section, we show the example of mapping massive MIMO baseband processing to an
FPGA-based platform, LuMaMi. We start with the complexity profile of the targeting system,
which is an LTE-like OFDM based massive MIMO system. The analysis together with the
knowledge on the platform features enable the optimization of algorithm mapping. Finally, we
give the detailed mapping scheme and some initial implementation results.

4.3.1 Algorithm Profile and Complexity Assessment

Figure 4.2 shows the processing blocks for the developed prototype testbed LuMaMi. On the
left side and right side, host processing as well as analog front-end can be seen, respectively.
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Figure 4.2: Block diagram for Massive MIMO baseband processing.
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Resampling Filter and Digital Front-end are standard blocks as used in wireless system.
Interleaving and Deinterleaving do not add computational complexity but rather latency since
blocks have to be buffered to be able to shuffle the data. Moreover, Symbol Mapping has no
real computational complexity.

To facilitate complexity analysis several simplifying assumptions were made:

• Only multiplications and divisions were considered as complex operations.

• Multiplication has same complexity as division.

• Additions have complexity one.

• Analysis was performed for an uncoded system, as the simplifying assumption would lead
to a complexity of 1 when implying, e.g. Turbo coders.

While accurate complexity estimates are still to be performed for the massive MIMO base-
band processing, rough estimates for important processng blocks are listed in Table 4.3. NFFT

and NSUB are the length of the FFT and number of subcarriers for the OFDM, M the number
of BS antennas and N is the number of users. Operations are divided in four different columns
depending when and how often they have to be performed. First column are operations required
after each uplink pilot symbol, i.e. every time channel estimation is performed. Second and
third column give complexities of operations for each uplink and downlink symbol, respectively.
The last column is devoted to operations which have to be done less frequently as for example
the reciprocity calibration.

In the normal case, there is a strong correlation between channel attenuations at nearby
OFDM subcarriers. This is exploited by transmitting pilots only on selected subcarriers for
each user. Channel estimates between pilots are obtained through interpolation and initially
we assume a simple first-order interpolation. MIMO precoding schemes, such as MRT and
ZF, include element-wise multiplication of each channel matrix entry with the corresponding
reciprocity calibration weights. Moreover, for MRC, multiplication with power scaling factors
to compensate for large-scale fading was added. MRC scheme for detection also includes nor-
malization for each of the N users. Complexity in uplink and downlink columns for detection
and precoding are basically the matrix-vector product of channel and symbols required for
each subcarrier. For complexity of matrix inversion, as required in ZF, an approximation using
Neumann-Series was assumed [49].

4.3.2 Mapping to the FPGA Array

The LuMaMi testbed operates with many parameters, see Table 4.4, similar to those in LTE
OFDMA. Using OFDM in TDD mode allows to separate overall bandwidth into sub-chunks,
to efficiently lower processing requirements of single blocks and to distribute processing over
the whole array.

Hence, the processing is distributed over six similar subsystems consisting of eight FPGAs
leaving two single FPGAs as a mini-subsystem. The overall received 20 MHz bandwidth is
split into eight chunks. Figure 4.3 shows the first four subsystems as applied in the LuMaMi
testbed. The purple boxes on the left hand side mark FPGAs, the orange box in the middle
is the central controller and the blue boxes on the right hand side are other subsystems. Each
FPGA is connected to two antennas and implements OFDM RX/TX functionality.

Upper part of the subsystem handles uplink transmission by first combining samples received
from all 16 subsystem antennas followed by splitting bandwidth into eight chunks. Seven of
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Table 4.4: High-level system parameters of LuMaMi testbed.

Parameter Variable Value

Bandwidth W 20 MHz
Carrier frequency fc 3.7 GHz
Sampling rate Fs 30.72 MS/s
FFT size NFFT 2048
# Used subcarriers Nused 1200
Slot time TS 0.5 ms
Sub-Frame time Tsf 1 ms
Frame time Tf 10 ms
# UEs K 10
# BS antennas M 100
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Figure 4.3: Subsystem 1-4 of the LuMaMi testbed BS.

these chunks are sent to other subsystems keeping the eighth chunk, assigned to the current
subsystem for MIMO detection. MIMO detection block receives its bandwidth chunks from
the other 7 subsystems and performs detection and channel estimation before sending decoded
data to the central controlling unit.

Lower part of the subsystem is responsible for downlink transmission. MIMO precoder block
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receives symbols to be send and uses estimated channel to precode symbols, also taking into
account reciprocity calibration weights, to mitigate deviation due to non-reciprocal behavior of
hardware at the RF chains. Precoded symbols are sent to bandwidth combiner of the current
subsystem as well as the seven other subsystems. Bandwidth combiner receives bandwidth
chunk from its own precoder and precoders of the seven other subsystem to build a whole
20 MHz bandwidth signal and forwards it to antenna splitter. Antenna splitter distributes the
signal to be sent to all FPGAs which perform OFDM TX functionality to trigger antennas.

Since the BS consists of only six subsystems plus a mini-subsystem, however, has to handle
eight different bandwidth chunks, two subsystems have to implement additional MIMO detector,
MIMO precoder and channel estimator functionality. These additional function blocks are
added in the fifth and sixth subsystem as shown in Fig. 4.4. Supplemental hardware blocks
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Figure 4.4: Subsystem 5-6 of the LuMaMi testbed BS.

in FPGA four and six integrate a second detection and precoding chain in these subsystem
leading to an overall processing of eight bandwidth chunks in 6 subsystems.
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The presented six subsystems occupy 48 FPGAs leaving two FPGAs arranged as a mini-
subsystem as shown in Figure 4.5. The mini-subsystems handles only four antennas employing
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Figure 4.5: Node 49 and 50 of the LuMaMi testbed BS.

a bandwidth splitter on one FPGA and a bandwidth combiner on the other transmitting and
receiving samples to or from other MIMO detectors/precoders in other subsystems. Bandwidth
splitter and bandwidth combiner also include antenna combiner and antenna splitter for the
four antennas in this subsystem.

A massive MIMO BS requires time synchronization and phase coherency between the RF
chains. This is achieved using a reference clock and timing/trigger distribution network as
shown in Fig. 4.6. The network consists of eight OctoClock modules in a tree structure with

PXIe-6674T

Master
OctoClockG

MCLK MTrigCLKS1

CLKS2

CLKS3 CLKS4

CLKS7

CLKS6

CLKS5

TrigS1

TrigS2

TrigS3 TrigS4

TrigS7

TrigS6

TrigS5

OctoClockG OctoClockG OctoClockG OctoClockG OctoClockG OctoClockG OctoClockG

USRP1...USRP8 USRP9...USRP16 USRP17...USRP24 USRP25...USRP32 USRP33...USRP40 USRP41...USRP48 USRP49...USRP50
CLK Trigger CLK Trigger CLK Trigger CLK Trigger CLK Trigger CLK Trigger CLK Trigger

Figure 4.6: Clock distribution in the LuMaMi testbed BS.

a master OctoClock feeding seven secondary OctoClocks. Low skew buffering circuits and
matched-length transmission cables ensure that there is low skew between the reference clock
input at each SDR. The source clock for the system is an oven-controlled crystal oscillator
within an NI PXIe-6674T timing module. Triggering is achieved by instigating a start pulse
within the Master SDR via a software trigger. This trigger is then output from an output port
on the master and input to the NI PXIe-6674T, which conditions and amplifies the trigger.
The trigger is then propagated to the master OctoClock and distributed down the tree to each
SDR in the system (including the master itself). This signal sets the reference clock edge to
use for start of acquisition for the TX and RX within each channel. Initial results show that
reference clock skew is within 100 ps and trigger skew is within 1.5 ns.
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Looking at Fig. 4.3 sample rates for the different uplink blocks can be identified as shown
in Table 4.5. One sample is the I- and Q-channel data of two antennas. The samples of the

Table 4.5: Sample rates at uplink blocks.

Block Input [MS/s] Output [MS/s]

OFDM RX 30.72 16.8
Antenna Combiner 7*16.8 117.72

Bandwidth Splitter
117.72 8*16.8
16.8

MIMO detector 7*16.8

antennas arrive with a rate of 30.72 MS/s and reduce to 16.8 MS/s after CP and guard band
removal, respectively. The antenna combiner combines the streams of seven incoming FPGAs
to an output stream of 117.72 MS/s. Note that the samples from FPGA two are fed in to the
bandwidth splitter locally, i.e. without going through the antenna combiner. Afterwards, the
bandwidth splitter splits the overall bandwidth into eight streams with a rate of 16.8 MS/s
each. MIMO detector block receives seven times the same rate at the input and feeds received
data to the central controller. Sample rates for the downlink are similar. Initial results show
that reference clock skew is within 100 ps and trigger skew is within 1.5 ns.

4.4 Hardware Accelerators

Massive MIMO inherently demands more signal processing due to the large number of antennas
at the BS and the larger number of users. Furthermore, the downlink signal processing needs
to performed faster than the channel coherence time, hence requiring a high throughput and
more importantly low latency hardware solutions. Different approaches need to be employed
to implement the signal processing hardware, ranging from highly reconfigurable processors to
high throughput application specific accelerators. Considering the critical challenge to combine
the high-throughput low-latency requirement with power efficiency, hardware accelerators are
essential to implement some key signal processing blocks in Massive MIMO systems. Specified
algorithm-hardware co-optimization can then be conducted to archive the design target. In
the following section we will describe briefly the accelerator design for different processing
algorithms which are likely candidates for the Massive MIMO system.

4.4.1 Zero-Forcing Precoding

As mentioned in Sec. 2.3.1 and Sec. 2.4.2, zero-forcing can be used in both precoding and
detection in the context of Massive MIMO. In this section, we demonstrate how ZF processing
can be efficiently implemented. ZF consists of the bulk of the processing complexity, which
mainly requires handling large channel matrices. In-terms of latency precoding is more critical
compared to detection, since detection can be performed by buffering the symbols. The ZF
precoding/detection requires a pseudo-inverse of the channel matrix, which requires two matrix
multiplications and one matrix inversion operation.
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Matrix Multiplication

A traditional matrix multiplication has a cubic order of complexity, and there are other divide-
and-conquer algorithms that have lower complexity; e.g., Strassen’s - O(N2.8). However, these

Figure 4.7: Systolic array to perform hermitian symmetric matrix multiplication.
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Figure 4.8: Neumann series based matrix inversion with tri-diagonal matrix as initial condition.

Figure 4.9: Circuit description of Tri-diagonal matrix multiplication.
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Table 4.6: Hardware Details for matrix multiplication.

Systolic Array MAC-unit Based

Matrix Size 10× 100 10× 100
# of multipliers 200 40
# of adders 200 40
# Internal Accumulators 110 20
Memory Port 1 2
Latency (cycles) 120 1000

algorithms have a very high (routing) overhead in hardware, and has been shown to be efficient
only for very large matrices even for processor based architectures. In case of pseudo-inverse,
the matrix multiplication is to compute a Gram matrix (Hermitian symmetric matrix), hence
the complexity can be reduced by half. This can be implemented with the traditional MAC-
units and a controller to handle the data-flow. However, if one memory is used (i.e. HH not
stored explicitly) a slightly more complicated scheduling is required. Another solution to exploit
this is to use high-throughput systolic arrays as shown in Fig. 4.7. The hardware cost for the
multiplication unit is detailed in Table 4.6.

Matrix Inversion

Although matrix inversion in theory has same order of complexity as matrix multiplication,
it is much more expensive to implement in hardware. The matrix inversion operation can be
divided into three approaches: explicit computation, implicit computation, and polynomial
expansion. In the first approach the matrix inversion is performed explicitly, whereas in the
second approach the inversion is computed as the solution to e linear system of equations. The
complexity has a crossover point after which performing explicit inversion would have lower
complexity. However, the implicit inversion would have a lower initial latency, since a full
matrix inversion is avoided. The third approach is based on rewriting the inversion as a matrix
polynomial, which allows for complexity reductions if the order of the polynomial is truncated.
In the following, brief details of these three approaches are provided.

Explicit Inversion Explicit inversions can be performed using various methods like QR-
decomposition, LU-decomposition, Cholesky-decomposition, Gauss-elimination etc. Another
approach for explicit inversion is the Neumann series [49], which uses the special channel prop-
erties arising in massive MIMO. This is a strong candidate for performing inversions since it
requires only a series of matrix multiplications, which are highly parallelizable and efficient in
hardware.

The top-level architecture for the Neumann series based precoder is shown in Figure 4.8.
The Neumann series convergence is improved by using tri-diagonal matrix as initial condition.
The inversion of tri-diagonal matrix is performed using Gauss Elimination. The tri-diagonal
multiplication is implemented in a FIR filter like structure as shown in 4.9. The architecture
has been implemented using RTL (register transfer level), and compatible with both ASIC and
FPGA flow. The ASIC implementation results in 65nm CMOS technology is provided in Table
4.7 and Table 4.8.

Implicit Inversion Implicit inversion can be performed by using standard linear-solvers like
conjugate-gradient, coordinate-descent etc. Apart from lower initial latency, these approaches
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Table 4.7: Hardware cost breakup for Neumann series.

Area [in mm2] Latency [in cycles]

Matrix Mult 0.11 200
Division 0.02 1
Tri-diag Inv 0.04 60
Tri-diag mult 0.02 3
Inner Mult 0.01 1

Table 4.8: Hardware Details for Neumann series based matrix inversion.

Matrix Size K ×K,K ∈ (2, 16)
Technology 65 nm
Gate Count 104K
Max. Freq (MHz) 420
Throughput (Inversions per sec) 0.051M

also have a lower memory requirements.

Polynomial Expansion The inverse of any invertible M ×M matrix A can be expressed as
a matrix polynomial expansion of order M :

A−1 = AM + cM−1A
M−1 + . . .+ c1A + c0I (4.2)

where c0, . . . , cM−1 are the coefficients of the characteristic polynomial of the matrix. This is
a consequence of the Cayley-Hamilton theorem, which also provides the exact expressions for
the coefficients as sums and products of the eigenvalues of A. Computing all the coefficients
would be more complex than an explicit inversion of the matrix, but various polynomial ap-
proximations are available in the literature [19, 22, 39]. Only a handful of the terms in the
polynomial matrix expansions are needed to obtain a good approximation of the matrix inver-
sion, and the number of terms can be tuned to provide a tradeoff between inversion accuracy
and end-performance. The key to reduced complexity is an iterative implementation where the
inverse is never computed explicitly, but only as a inner products with different data symbol
vectors [39].

4.4.2 Low complexity PAPR aware precoding

OFDM is known to suffer from high PAPR, and requires a linear PA with high dynamic range to
avoid out-of-band components due to non-linearity and signal clipping. One way to reduce the
PAPR is to apply the DTCE precoding algorithm described in Section 2.3.3, which is directly
designed for low PAPR. Alternatively, one can modify conventional linear precoding schemes
to reduce their PAPR.

A low-complexity approach to reduce the PAPR of linear precoding is described in [50]. It
performs a simple clipping of the signals before they are sent to the antennas, which creates
a deliberate clipping distortion. This distortion is mitigated by reserving a certain subset of
the antennas to counteracting the clipping. To some extent it is similar to tone-reservation
in OFDM systems, where subcarriers are reserved for mitigation of PAPR rather than data
transmission. The difference, however, is that reserving tones on OFDM has a linear impact
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Figure 4.10: Top level description of PAPR aware precoding.

on the user rates, while reserving antennas in massive MIMO only has a logarithmic influence
on the user rates. The PAPR aware precoding scheme from [50] is referred to as “antenna-
reservation” and its top level architecture is depicted in Fig. 4.10. As an example, with 100
antennas at the BS, we can extend the range of output power by 4 dB, as compared to no
PAPR reduction, with only 15% increase in precoding complexity.
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Chapter 5

Summary of processing requirements

The initial assessment of baseband processing requirements for Massive MIMO presented in this
deliverable points to several important aspects. Depending on the chosen transmission scheme,
baseband processing requirements vary both in terms of the amount operations that need to be
done and in terms of which hardware platforms/architechtures that are most efficient. Since it
is an initial assessment, several of the results are incomplete and need further refinements.

5.1 Single-carrier vs. OFDM

The choice between single-carrier and OFDM has the potential to significantly influence both
performance and baseband processing complexity. Investigations show that, in the massive
MIMO regime, both single-carrier and OFDM based schemes have similar BER performance
and there are only minor differences in their processing requirements. At this stage, no major
advantage of one scheme over the other has been identified from this perspective.

An important non-technical aspect is that most recent standards are based on OFDM, such
as LTE and WiFi. Massive MIMO is under discussion in several standardization bodies and
massive MIMO research related to OFDM based systems may therefore have a larger short-term
impact than research focused on single-carrier ones.

A third option would be to work in single-carrier but without frequency-domain processing.
While this approach has limitations in order to implement some of the massive MIMO air
interface options and algorithms, it can provide a low-performance and low-complexity solution
by relying only on time-domain (time-reversal) processing in the MRT/MRC case, covering
some of the massive MIMO scenarios.

5.2 Massive MIMO algorithms

A number of basic properties of massive MIMO influence the system complexity. The main
one relates to the averaging of noise and other non-correlated impairments over the different
antennas. This strongly relaxes the specifications that need to be achieved on each individual
antenna. At the digital side, the most direct impact is on quantization, where the resolution
can be strongly reduced. It also enables the use of simple algorithms such as MRT/MRC thanks
to the coherent combination of the useful signal over the antennas while interference is non-
coherently added. The asymmetry between the number of base station antennas and number
of users makes it important to acquire CSI only in the uplink and exploit channel reciprocity
to use this CSI also in the downlink. Since only the propagation channels are reciprocal, not
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the transceivers, a dedicated non-reciprocity calibration procedure was presented.
While the dimension of massive MIMO matrices can be large and lead to heavy computa-

tions, many optimization steps are possible. For example, it was shown that reduced-accuracy
inversion of the channel matrix is sufficient for good performance when using a ZF precoder,
which strongly reduces complexity.

The exploitation of channel coherence in time and frequency also impacts all computations
related to channel estimation and precoder computation, given that the same precoder can be
used over a broader time-frequency range.

5.3 Linear vs. non-linear precoding

A classical argument for massive MIMO is that linear precoding performs almost as well as
optimal precoding. This is attributed to the excess number of BS antennas, compared to the
number of user terminals, and favourable propagation conditions. In theory this works well,
resulting signal-power variations on the antennas in combination with amplifier non-linearities
have the potential to reduce power efficiency, since large amplifier back-offs may be required
to fulfill requirements on out-of-band emissions. Two conceptually different non-linear pre-
coding schemes have been investigated, where signal-power variations are reduced. The most
efficient scheme, from a power-variation point of view, is based on selecting constant envelope
signals for all antennas in the discrete-time domain, through an optimization procedure. The
computational complexity of this scheme has not been fully investigated at this point. The
other scheme is similar to tone-reservation used to reduce power-variations in OFDM systems.
Linearly precoded antenna signal are clipped to reduce power variations (in the discrete-time
domain) and compensation signals are transmitted on a small subset of antennas reserved for
that particular purpose. The second approach has very small complexity increase compared to
the linear precoding on which it is based.

Presented results show that Massive MIMO opens up new opportunities for computationally
efficient non-linear precoding techniques, allowing power amplifiers to work at small back-offs.
While complexity assessments are rudimentary at this stage, initial results encourage further
investigation in this direction. These investigations should also use realistic amplifier models.
This will both improve realism/accuracy of evaluations as well as provide a means to find
out which amplifier characteristics are the critical ones when designing for a massive MIMO
application.

5.4 Computational platforms and architectures

Selecting a hardware platform for a given system is always a trade-off between different dimen-
sions. The three main aspects are the system performance (throughput as well as signal quality),
the system cost (area and power consumption) and the system flexibility (reconfigurability and
time-to-market).

At one extreme of the hardware range, ASIC components offer the best trade-off between cost
and performance, although the cost is only favourable in large volumes. The full ASIC approach
lacks the necessary flexibility to be selected for massive MIMO: the field is not mature enough,
various algorithmic solutions are still explored and run-time flexibility is expected depending
on variations in channel propagation, users, traffic, scenarios, etc. Moreover, no standard is
available yet, making a certain level of hardware flexibility even more necessary in the first
implementations.
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At the other extreme, fully-flexible general-purpose processors lack the throughput necessary
to implement a complete massive MIMO system, or will only do so at a prohibitive cost and
power consumption.

We propose the use of software-defined radios dedicated to the massive MIMO field. By this
we mean platforms combining different basic components offering just the required amount of
flexibility while still scoring good enough in the cost-performance plane. Such platforms can
build on ASIP components, which thanks to the restriction of their flexibility to the dedicated
field, enable to operate much closer to the intrinsic ASIC efficiency while keeping sufficient
flexibility. They could be complemented by some more flexible components such as FPGAs,
especially in the first prototypes. Once some of the key digital signal processing blocks are
frozen in the future evolution of massive MIMO, those dominating the system area and power
consumption could benefit from being redesigned as ASIC accelerators.

When using SDR platforms, the design of the architecture and the algorithms has to be
performed in combination, co-design being the way to obtain the optimal performance of the
system by adapting architecture to the algorithmic requirements without over-designing and
similarly selecting algorithms that suit well to the implementation, e.g., regular flows and
inherent parallelism.

5.5 Memory requirements and data shuffling

For most digital systems, memories typically count for half the system area and power con-
sumption. In case of simple systems, this can be handled as a basic overhead factor. However,
in the case of massive MIMO systems, the data storage and shuffling aspects become more
crucial because of the large number of antenna chains having some physical distance between
each other. As can be clearly seen from the LuMaMi testbed, the amount of data to shuffle
over the system is huge and requires dedicated technical solutions. This is a strong incentive
in order to distribute the processing as far as possible and reduce the amount of data transfers

Another element with huge impact on memories as well as computations is the required
digital resolution, i.e., how many bits should we use to represent the different signals. Massive
MIMO systems are expected to provide good performance even at a low resolution, thanks to
the combination of all antennas which averages the quantization noise. Our first results tend
to confirm this assumption but it will be explored more systematically in the future, in order
to dimension more accurately the system.

5.6 Future assessment

A number of points will benefit from further study in the project.

5.6.1 Centralized versus distributed processing

In order to decide between centralized processing and distributed processing close to each
antenna, we have to consider several elements. The main motivations for distributed processing
is a reduced data communication with the central part of the base station and higher system
scalability. The corresponding drawbacks could be limitations in the choice of algorithmic
solutions, given that some of them are only applicable in a centralized way. This trade-off
should be quantified in order to recommend one of the options.
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5.6.2 Quantizing complexity-performance trade-offs

Some of those trade-offs have to be assessed numerically and not only as trends. Complexity
and performance will be explored in the project by combining channel measurements for re-
alistic assessment, performance simulations for key scenarios, testbed experiments, design of
new algorithms and modeling of their complexity. A global power consumption model is also
required.
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List of Abbreviations

ACLR Adjacent Channel Leakage Ratio

ASI Application-Specific Instruction

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

BER Bit Error Rate

BS Base Station

CB Conjugate Beamforming

CP Cyclic Prefix

CE Cyclic Extension

CSI Channel Statie Information

DLP Data-Level Parallelism

DSP Digital Signal Processor (or Digital Signal Processing)

DTCE Discrete-Time Constant-Envelope

EC European Commission

FD Frequency-Domain

FDD Frequency-Division Duplex

FDE Frequency-Domain Equalizer

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

ILP Instruction-Level Parallelism

KSP Known-Symbol Padding

LMMSE Linear Minimum Mean-Squared Error

MIMO Multiple-Input Multiple-Output

MMSE Minimum Mean-Squared Error

MRC Maximum-Ratio Combining

MRT Maximum-Ratio Transmission

MS Mobile Station

MSE Mean-Squared Error

NMSE Normalized Mean-Square-Error

NRE Non-Recurring Engineering
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OFDM Orthogonal frequency-division multiplexing

PA Power Amplifier

QAM Quadrature Amplitude Modulation

PAPR Peak-to-Average Power Ratio

PER Packet Error Rate

RF Radio Frequency

RZF Regularized Zero-Forcing

SC Single-Carrier

SDR Software-Defined Radio

SIMD Single-Instruction Multiple-Data

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

TD Time-Domain

TDD Time-Domain Duplex

TDE Time-Domain Equalizer

TLP Task-Level Parallelism

VLIW Very Long Instruction Word

ZF Zero Forcing

ZP Zero Padding
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