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Executive Summary

Massive MIMO (MaMi) is the next generation multi-user MIMO technology, which has been
evolved to deliver the theoretical gains also under practical conditions. A key difference from
previous generations is the large number of base station (BS) antennas and ability to spatially
multiplex many tens user equipments (UEs) on the same time/frequency resource. The LuMaMi
testbed has demonstrated that the MaMi technology can be implemented using off-the-shelf
hardware, which shows the maturity of the technology, but also leads to a greatly over-designed
system with huge computational capability, high-grade hardware resolution, and high energy
consumption. These issues can be circumvented by tailoring the signal processing algorithms,
processing architecture, and hardware implementation to the specific characteristics of MaMi,
including channel hardening and the robustness towards hardware distortion. In particular,
the MAMMOET project has demonstrated that a well-designed system implementation can
achieve performance close to the theoretical limits, using a substantially reduced computational
complexity, hardware resolution, and energy consumption.

Major developments on the algorithmic, architectural, and hardware design levels have been
carried out in WP3 during the first two years of MAMMOET. In this deliverable, we consolidate
these efforts by evaluating selected algorithms from a system and implementation perspective
and by developing new algorithms to address key bottlenecks that remain. Conclusions include:

• The propagation channel has a greater predictability in MaMi systems than convention-
ally, which allows for estimating the channel relatively sparsely over time and frequency.
Interpolation schemes over the frequency domain can be implemented efficiently and pre-
diction schemes can prolong the time interval over which coherent downlink transmission
is possible, thus increasing the interval between pilot transmissions.

• The resolution of the analog-to-digital converters (ADCs) at the BS can be reduced sub-
stantially, from the around 15 bit per real dimension in legacy systems to 3-4 bit in MaMi.
The loss in data rate is negligible and the energy efficiency is maximized by doing so. The
reason is that the total number of bits obtained by a BS is large, when having many
antennas, while the hardware implementation is greatly simplified for every reduction in
bit-width. MaMi can even be operated with 1 bit ADC resolution, but at a noticeable
performance loss.

• Man-made interference, such as pilot contamination, is not a fundamental limiting factor
in MaMi, as sometimes claimed in the literature. The M-MMSE detector, developed in
this project, can reject any type of interference, at the price of the increased complexity of
estimating the channel to each such interferer. Hence, there is a complexity-interference
design tradeoff in practical implementation.

• Power control is key in both uplink and downlink, to determine how the high sum rate
of a MaMi cell is divided between the UEs. Thanks to the channel hardening properties,
the sum rate or max-min fairness power control problems can be solved efficiently and the
solutions utilize only depend on the large-scale fading characteristics. Since the large-scale
fading is fixed for a substantial time period, the power control coefficients can be updated
every second instead of every millisecond, which allows for the use of the proposed power
control algorithms in practice.

• The reduced hardware resolution may affect system operating in adjacent bands, due to
the out-of-band (OOB) radiation. We have proved that the OOB radiation is basically the
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same in MaMi as with legacy systems, using the same total transmit power and hardware
resolution. Hence, the transmit power needs to be reduced along with the hardware
resolution, to keep the OOB radiation fixed in practice. This is an important result, but
not a showstopper, since MaMi systems are anyway intended to use their array gain to
operate at lower transmit power levels.

• The main computational complexity in the baseband originates from OFDM modulation
and ZF detection/precoding. These operations have been successfully implemented in
CMOS in 28nm CMOS, for a typical MaMi setup with 128 BS antennas and 8 UEs. The
conclusion from the implementation is that the complexity and energy consumption over
these baseband processing tasks are highly feasible in practice.
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Chapter 1

Introduction

The key difference between massive MIMO (MaMi) and legacy systems is not the number
of base station (BS) antennas; indeed, each panels in an LTE site contains tens of antennas
which are interconnected to form a fixed beam tilted towards the coverage area. The main
difference is instead the number of transceiver chains; each antenna is digitally steerable in
MaMi while legacy systems typically have an order-of-magnitude fewer transceiver chains than
physical antenna elements. In principle, legacy transceiver technology can be used along with
MaMi, but resulting in a substantially higher cost, energy consumption, and computational
complexity. This deliverable takes on the challenge of developing hardware-aware algorithms
that can greatly reduce the implementation complexity of MaMi, by exploiting the spatial
resolution and multiplexing capabilities while not over-dimensioning the hardware resolution
and algorithmic accuracy.

This deliverable serves as a continuation of the line of work presented in Deliverable 3.1
[38] and Deliverable 3.2 [39]. This deliverable focuses on evaluation of hardware-aware signal
processing strategies for MaMi, robust and efficient detectors, and hardware-implementation of
selected algorithms.

In Chapter 2, we provide new algorithmic development and evaluation related to the base-
band processing. Idealized block-fading models, where each channel is fixed within a coherence
time-frequency interval, have dominated the MaMi literature. In Deliverable 3.2, we consid-
ered realistic frequency-selective fading and analyzed how densely the channels need to be
estimated in the frequency domain. In this deliverable, we validate previous algorithms from
a system-level perspective and extend the analysis to also capture time-variations of the chan-
nels. Furthermore, we show that the uplink detection is robust towards the distortion caused
by low-resolution quantization. The number of quantization bits required for operating the
system efficiently, from a rate or energy efficiency perspective, are quantified. We also show
that the multi-cell minimum mean-squared error (M-MMSE) detector, which was developed as
an optimal detector in Deliverable 3.2, is robust with respect to pilot contamination and other
types of man-made interference.

In Chapter 3, we consider the interaction between hardware and signal processing beyond
the baseband processing. The complexity of uplink and downlink power control algorithms can
be greatly reduced due to the channel hardening, which alleviates the need to adapt the power
control to small-scale or frequency-selective fading variations. We also address the important
area of out-of-band (OOB) radiation, to determine if and how systems operating in adjacent
bands are affected by the beamforming that takes place in MaMi.

The practical feasibility of the MaMi baseband processing is validated in Chapter 4, by chip
implementation of the key processing tasks, including OFDM modulation, uplink detection,

MAMMOET D3.3 Page 1 of 101



Hardware-aware signal processing for MaMi systems

and downlink precoding. The energy consumption of this dedicated implementation is showed
to be low. A processing architecture that divided processing tasks between per-antenna, per-
subcarrier, and per-UE is also presented.

In this deliverable, MaMi has been analyzed with different focus in different sections. To keep
the analysis and notation simple, each section uses its own dedicated system model covering
all the aspects that are important for that particular analysis and discussion, while leaving
out unimportant aspects. Finally, we note that the development of algorithms for per-antenna
constant envelope precoding are disseminated in Deliverable 3.1 and Deliverable 3.2, and not
in this deliverable, due to very successful advances in this area during first two years of the
project.
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Chapter 2

Hardware-Aware Baseband Processing

This chapter describes hardware-aware refinements of the baseband processing algorithms for
downlink precoding, uplink detection, and channel acquisition in MaMi. The main observation
is that the computational and hardware complexities can be greatly reduced in MaMi, as
compared to what has previously been studied in the literature, with only a negligible loss in
end performance. This chapter both provides new algorithms and deeper analysis of algorithms
that have been proposed in previous deliverables in the MAMMOET project.

2.1 Time-Frequency Channel Acquisition Schemes

The MaMi physical layer concept was initially developed under the simplifying assumption of
block-fading channels, where each channel takes a random realization within a time/frequency
block called the channel coherence interval and then another independent random realization
in the next such interval. In practice, the channel variations in the time and frequency domains
are continuous, thus the dimensionality of a coherence interval cannot be characterized exactly
and there will always be some channel variations within each interval.

In this section, we present analysis and results on the estimation, interpolation, and predic-
tion of channels over the time and frequency domain, using practical models for the time and
frequency channel variations. Initial work on this topic was presented in Section 2.4 in Deliv-
erable 3.2 [39], with focus on frequency interpolation. We extend this analysis to time-domain
prediction in Section 2.1.1. In Section 2.1.2, the previously developed frequency interpolation
schemes are analyzed in terms of system-level performance and complexity.

2.1.1 Prediction of Prediction of Channel Response

In this subsection, we present a framework for prediction of the channel variations in MaMi
systems, based on Kalman filtering. This framework is particularly relevant for the downlink
precoding, which must rely on the uplink pilots that were transmitted earlier in time. In
particular, we want to answer the following practical questions:

• Can channel prediction be used to reduce the training overhead in MaMi? And what is
the loss in performance if the zero forcing (ZF) matrix is based on the predicted channel
compared to that based on the true channel (estimated using pilots)?

• How robust is the predictor to imperfect knowledge of the temporal channel statistics?
What is the loss in performance incurred, for example, due to a mismatch in the Doppler
spread value?
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• Can we use simple predictor models at the base station (BS) to approximate a given
channel spectrum?

To this end, we consider both an auto-regressive (AR) process as well as an auto-regressive
moving average (ARMA) process to model at the BS the time-variations of the channel whose
true temporal spectrum can be either the Jakes spectrum or a rectangular spectrum. We derive
both the uplink and the downlink achievable rates for imperfect CSI acquired using Kalman
estimation or prediction. We present extensive numerical results to quantify the loss in rate
incurred due to prediction errors and due to imperfect knowledge of the channel statistics.

System Model

We consider the uplink and downlink of a single-cell massive MIMO-OFDM system, where the
bandwidth is divided into S orthogonal subcarriers and there are a total of N OFDM symbols.
The BS is equipped with an array of M antennas and there are K single-antenna users in the
cell. The L-tap channel from the kth user to the mth antenna at the BS over the nth OFDM
symbol is denoted by

g̃mk [n] = [g̃mk [n, 0] g̃mk [n, 1] · · · g̃mk [n, L− 1]]T . (2.1)

Moreover, for a user-antenna pair, the taps are assumed to be independent, but they need not
be identically distributed. Each entry g̃mk [n, l] consists of both small scale fading and distance-
dependent path loss of the kth user. We assume that the path loss from a user is the same to
all the antennas at the BS. This assumption is justified because the size of a co-located MaMi
antenna array is much smaller than the distance between the users and the BS. Furthermore,
we assume uncorrelated Rayleigh fading and the path loss constant across time. Therefore,
g̃mk [n] ∼ CN (0,Λk), where Λk is a diagonal matrix with the diagonal representing the channel
power delay profile (PDP) of the kth user and that includes the path loss as well.

Uplink Pilot Signaling and Channel Estimation: The frequency-domain signal ym[n] ∈
CNp×1 received over the nth OFDM symbol at the mth antenna of the BS during uplink pilot
signaling is

ym[n] =
K∑
k=1

√
pukΥ

t
kΩrg̃

m
k [n] + wm[n], (2.2)

where puk is the uplink pilot SNR per subcarrier and per OFDM symbol of the kth user, Υt
k ∈

CNp×Np is a diagonal matrix with the Np-length pilot sequence xtk corresponding to user k,
Ωr ∈ CNp×L consists of the first L columns andNp rows of the S-point discrete Fourier transform
(DFT) matrix Ω ∈ CS×S where [Ω]m,n = e−j2π(m−1)(n−1)/S. These rows correspond to the set
of subcarriers on which the Np pilots are sent. The pilots are assumed to be equally spaced in
frequency and Np ≤ S. The noise vector at the mth antenna of the BS over the nth OFDM
symbol is denoted by wm[n]. Furthermore, wm[n] ∼ CN (0, INp), independent and identically
distributed (i.i.d.) across antennas m and time n. If the pilot sequences are chosen such that1

ΩH
r ΥtH

k Υt
iΩr = NpILδki, where δki = 1 if k = i and δki = 0 otherwise. Then a sufficient statistics

for estimating g̃mk [n] is

ỹmk [n] =
1√
Np

ΩH
r ΥtH

k ym[n] =
√
pukNpg̃

m
k [n] + w̃m

k [n], (2.3)

1To ensure orthogonality among pilot sequences of different users over any OFDM symbol, it is necessary to
have Np ≥ KL.
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where w̃m
k [n] ∼ CN (0, IL), i.i.d. across k and m.

The autocorrelation function (ACF) captures the variability of a wireless channel over time.
The ACF, which is a second-order temporal statistic, depends on the propagation geometry,
the velocity with which the user moves and the antenna characteristics. A common assumption
is that the propagation path from the transmitter to the receiver consists of two-dimensional
scattering with a vertical monopole antenna at the receiver. In that case, the theoretical power
spectral density (PSD) of either the in-phase or the quadrature component of the received
fading signal has the U-shaped band-limited form [27]

S(f) =
1

πfd

√
1−

(
f
fd

)2
, |f | ≤ fd (2.4)

and is 0 otherwise, where fd = v/λ is the maximum Doppler frequency in Hz, v is the mobile
speed, and λ is the wavelength of the received carrier wave. The corresponding continuous-time
normalized autocorrelation of the received signal is rgg(τ) = J0(2πfdTsτ), where J0(·) is the
zeroth-order Bessel function of the first kind.

Another variation on the PSD that is based on a three-dimensional model with isotropic
scattering in all the three directions is examined in [13]. In this model, the PSD has flat
bandlimited characteristics with a normalized ACF rgg(τ) = sinc(2fdTsτ).

Our objective is to estimate the channel taps at different time instants. To this end, we
consider both an ARMA process as well as an AR process to approximately model the time
variations of the channel taps g̃mk [n, l]. In this work, we consider the channels that can either
have Bessel ACF or sinc ACF as described above. A pth order AR model for g̃mk [n, l] is presented
as

g̃mk [n, l] =

p∑
i=1

φig̃
m
k [n− i, l] + ψ0η̃

m
k [n, l], (2.5)

where φis and ψ0 are obtained using the Yule-Walker equations as follows [29]:
φ1

φ2
...
φp

 =


rgg[0] rgg[1] · · · rgg[p− 1]

rgg[1] rgg[0]
. . . rgg[p− 2]

...
. . . . . .

...
rgg[p− 1] · · · · · · rgg[0]


−1 

rgg[1]
rgg[2]

...
rgg[p]

 (2.6)

where rgg[τ ] = E [g̃mk [n, l]g̃mk [n− τ, l]∗] and

ψ0 = Λk[l, l]

(
rgg[0]−

p∑
i=1

φirgg[i]

)
, (2.7)

where Λk[l, l] is the power of the lth channel tap. We use the AR model to capture the time-
variations of the channel that has a Bessel ACF, i.e., channels for which rgg[τ ] = J0(2πfdTsτ).
Similarly, an ARMA(p,p) model for g̃mk [n, l] can be presented as [29]

g̃mk [n, l] =

p∑
i=1

φig̃
m
k [n− i, l] +

p∑
i=0

ψiη̃
m
k [n− i, l], (2.8)

where the coefficients φi and ψi, for i = 0, . . . , p, are obtained from the transfer function
of a Butterworth low pass filter of order p designed with the cutoff frequency equal to the
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normalized Doppler frequency fdTs, where fd is the maximum Doppler frequency and Ts is
the OFDM symbol duration.2 We use the ARMA model to capture the time-variations of the
channel that has a sinc ACF, i.e., channels for which rgg[τ ] = sinc(2fdTsτ). Since the ARMA
coefficients are taken from the transfer function of a Butterworth low pass filter that has a
rectangular spectrum, it therefore can closely model such channels.

The AR or the ARMA models used to capture the time-variations of the channel can be
equivalently given as a state-space model. Specifically, the state transitions can be modeled as

X̃
m

k [n+ 1, l] = AX̃
m

k [n, l] + Bũmk [n+ 1, l], (2.10)

where X̃
m

k [n, l] , [g̃mk [n, l], . . . , g̃mk [n − p + 1, l]]T is the state of the system of the lth channel
tap at time n, p is the order of the model, and ũmk [n+ 1, l] is the white Gaussian process noise.

The matrices A and B are given as follows:

A =


φ1 φ2 · · · φp
1 0 · · · 0
0 1 · · · 0
0 0 · · · 1

 ∈ Cp×p, (2.11)

B =


ψ0 ψ1 · · · ψp
0 0 · · · 0
0 0 · · · 0
0 0 · · · 0

 ∈ Cp×(p+1), for ARMA model, (2.12)

B =

ψ0
...
0

 ∈ Cp×1, for AR model. (2.13)

From (2.3), the observations of the state (each channel tap) at time n can be represented by
a linear equation of the form

ỹmk [n, l] = SX̃
m

k [n, l] + w̃mk [n, l], (2.14)

where
S = [

√
pukNp, 0, . . . , 0] (2.15)

and w̃mk [n, l] is the additive measurement noise. Furthermore, w̃mk [n, l] ∼ CN (0, 1).
Now, given a set of observations ỹmk [1, l], ỹmk [2, l], . . ., ỹmk [n + 1, l], the task is to determine

the estimation filter that at the (n + 1)th time instant would generate an optimal estimate
ˆ̃X
m

k [n + 1, l] of the state X̃
m

k [n + 1, l]. We present below the steps to obtain the Kalman
estimate of the lth channel tap:

1. Initialization: We begin by initializing ˆ̃X
m

k [0, l]
∣∣[0] = 0 and the prediction error covariance

2The transfer function T (z) of a Butterworth low pass filter of order p designed with a cutoff frequency equal
to the normalized Doppler frequency fdTs is given by

T (z) =

∑p
i=0 ψiz

−i

1 +
∑p

i=1 φiz
−i
, (2.9)

where z = exp(j2πfd/fs).

MAMMOET D3.3 Page 6 of 101



Hardware-aware signal processing for MaMi systems

matrix P0|0 = Λk[l, l]R, where

R =


rgg[0] rgg[1] · · · rgg[p− 1]

rgg[1] rgg[0]
. . . rgg[p− 2]

...
. . . . . .

...
rgg[p− 1] · · · · · · rgg[0]

 (2.16)

As mentioned before, the Jakes channel model has a Bessel ACF, i.e., rgg[τ ] = J0(2πfdTsτ)
while the channel model with rectangular spectrum has sinc ACF, i.e., rgg[τ ] = sinc(2fdTsτ).

2. One-step-ahead prediction: This involves estimating the state at n+ 1 based on observa-
tions up to time instant n:

ˆ̃X
m

k [n+ 1, l]
∣∣[n] , E[X̃

m

k [n+ 1, l]
∣∣(ỹmk )n] = Aˆ̃X

m

k [n, l]
∣∣[n], (2.17)

where (ỹmk )n = ỹmk [1, l], . . . , ỹmk [n, l].

3. Computing the prediction error covariance matrix: The prediction error covariance matrix
is given by

Pn+1|n , E[(X̃
m

k [n+ 1, l]− ˆ̃X
m

k [n+ 1, l]
∣∣[n])(X̃

m

k [n+ 1, l]− ˆ̃X
m

k [n+ 1, l]
∣∣[n])H

∣∣(ỹmk )n]

= APn|nA
H + BBH . (2.18)

4. Kalman update: Having obtained the predictive estimate of the state, ˆ̃X
m

k [n + 1, l]
∣∣[n],

suppose now that we take another observation ỹmk [n+1, l], then this can be used to update

the predictive estimate, i.e. to obtain ˆ̃X
m

k [n + 1, l]
∣∣[n + 1]. The Kalman estimate of the

state of the system is given by

ˆ̃X
m

k [n+ 1, l]
∣∣[n+ 1] = ˆ̃X

m

k [n+ 1, l]
∣∣[n] + Kn+1

(
ỹmk [n+ 1, l]− S ˆ̃X

m

k [n+ 1, l]
∣∣[n]
)
, (2.19)

where ỹmk [n+ 1, l] denotes the observation at the current time instant n+ 1 and S ˆ̃X
m

k [n+
1, l]
∣∣[n] denotes the predicted observation. Thus, the Kalman estimate of the channel tap

can be interpreted as the sum of the prediction and a fraction of the difference between
the predicted and the actual observation. The Kalman gain matrix Kn+1 which is chosen
so as to minimize the mean square error is given by

Kn+1 = Pn+1|nS
H
(
SPn+1|nS

H + 1
)−1

. (2.20)

Next we compute the updated error covariance matrix through Riccati recursion.

5. Updated error covariance matrix: The updated error covariance matrix is given by:

Pn+1|n+1

, E[(X̃
m

k [n+ 1, l]− ˆ̃X
m

k [n+ 1, l]
∣∣[n+ 1])(X̃

m

k [n+ 1, l]− ˆ̃X
m

k [n+ 1, l]
∣∣[n+ 1])H

∣∣(ỹmk )n+1]

= (IP −Kn+1S) Pn+1|n (IP −Kn+1S)H + Kn+1K
H
n+1. (2.21)
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Figure 2.1: Power spectral density of AR predictors of different orders, fdTs = 0.02

Next, we will briefly illustrate the PSDs of the two types of spectrum, and the ability to
approximate them by AR or ARMA predictors. Figure 2.1 plots the PSDs of AR predictors of
different orders, whose AR coefficients are obtained using Yule-Walker equations based on the
Jakes spectrum. These are used as approximate models to characterize the Jakes spectrum.
We can observe that as the model order increases, the spectrum becomes sharper at the edges
at the cost of increased ripples in the passband.

Figure 2.2 plots the PSDs of ARMA predictors of different orders, whose ARMA coefficients
are obtained from the transfer function of a Butterworth low pass filter designed with a cutoff
frequency of fdTs. These are used as approximate models to characterize the rectangular
spectrum with sinc ACF. We can observe that as the model order increases, the spectrum falls
off sharply at the transition from the passband to the stopband.

Uplink Data Transmission: The data signal yu[n, s] ∈ CM×1 received on the uplink over
the sth subcarrier and the nth OFDM symbol is given by

yu[n, s] = G[n, s]Φu[n, s]
1/2xu[n, s] + wu[n, s], (2.22)

where G[n, s] ∈ CM×K denotes the frequency-domain channel matrix over the nth OFDM
symbol and the sth subcarrier such that G[n, s] = [g1[n, s] . . .gK [n, s]] and gk[n, s] ∈ CM×1 is
the frequency-domain channel vector of the kth user over the nth OFDM symbol and the sth
subcarrier. Furthermore, [G[n, s]]m,k = Gm

k [n, s] = ωHs g̃mk [n], where ωHs denotes the sth row
consisting of only the first L columns of the N -point DFT matrix Ω. Also, Φu[n, s] is a K ×K
diagonal matrix of the uplink data SNR of the K users such that [Φu[n, s]]k,k = puk . The data
vector of the K users over the nth OFDM symbol and the sth subcarrier is denoted by xu[n, s]
and the noise vector at the BS over the nth OFDM symbol and the sth subcarrier is denoted
by wu[n, s]. Furthermore, xu[n, s] ∼ CN (0, IK) and wu[n, s] ∼ CN (0, IM).

Downlink Data Transmission: The signal xd[n, s] ∈ CM×1 transmitted by the BS on the
downlink over the sth subcarrier and the nth OFDM symbol is given by

xd[n, s] =
√
pdÂ[n, s]q[n, s], (2.23)

where pd is the downlink SNR, Â[n, s] ∈ CM×K is the precoding matrix that depends on the
estimated or the predicted CSI at the nth OFDM symbol index and the sth subcarrier, and
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Figure 2.2: Power spectral density of ARMA predictors of different orders, fdTs = 0.02

q[n, s] ∈ CK×1 is the vector of information bearing symbols of the K users. To satisfy the power
constraint at the BS, the transmission symbols and the precoding matrix Â[n, s] are chosen
such that E[q[n, s]] = 0, E[q[n, s]q[n, s]H ] = IK and tr(Â[n, s]Â[n, s]H) = 1, where tr(·) is the
trace. This will imply that E[‖x[n, s]‖2] = pd.

The signal vector yd[n, s] ∈ CK×1 received collectively at the K users is given by

yd[n, s] = GH [n, s]xd[n, s] + wd[n, s], (2.24)

where wd[n, s] ∈ CK×1 and whose kth entry denotes the additive white Gaussian noise at the
kth user. Furthermore, we assume that wdk [n, s] ∼ CN (0, 1). Then, the signal ydk [n, s] received
on the downlink at the kth user over the nth OFDM symbol and the sth subcarrier can be
written as

ydk [n, s] =
√
pdg

H
k (n, s)âk[n, s]qk[n, s] +

√
pd
∑
i 6=k

gHk [n, s]âi[n, s]qi[n, s] + wdk [n, s]. (2.25)

Achievable Rate Analysis

We now present expressions for the achievable uplink and the downlink rates.
Uplink Rate Analysis: We let the detector matrix Â[n, s] be an M × K matrix which

depends on the estimated frequency-domain channel matrix and on the choice of detection
method. The received vector on the nth OFDM symbol and the sth subcarrier after using the
detector is given by

ru[n, s] = ÂH[n, s]yu[n, s] = ÂH[n, s]G[n, s]Φu[n, s]
1/2xu[n, s] + ÂH[n, s]wu[n, s]. (2.26)

Thus, the kth element of ru[n, s] is

ruk [n, s] =
√
puk â

H
k [n, s]gk[n, s]xuk [n, s]

+
K∑

i=1,i 6=k

√
pui â

H
k [n, s]gi[n, s]xui [n, s] + âHk [n, s]wu[n, s], (2.27)
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where âk[n, s] ∈ CM×1 is the kth column of Â(n, s) corresponding to the kth user and is a

function of the estimated channel. Let us define V̂ki = âHk [n, s]gi[n, s]. Then, we can write (2.27)
as

ruk [n, s] =
√
pukV̂kkxuk [n, s] +

∑
i 6=k

√
pui V̂kixui [n, s] + âHk [n, s]wu[n, s]. (2.28)

Using the standard technique in [28], an achievable ergodic uplink rate over subcarrier s and
OFDM symbol n is given by

Rk(n, s) = log2

1 +
puk

∣∣∣E [V̂kk]∣∣∣2
E [||âHk [n, s]||2] + pukvar

[
V̂kk

]
+
∑

i 6=k p
u
i E
[∣∣V̂ki∣∣2]

 , (2.29)

Downlink Rate Analysis: We let the precoder matrix Â[n, s] be an M ×K matrix which
depends on the estimated or the predicted frequency-domain channel matrix and on the choice
of precoding method. Let us define Ŵki = gHk [n, s]âi[n, s]. Then, from (2.25), the signal received
at the kth user can also be written as

ydk [n, s] =
√
pdŴkkqk[n, s] +

√
pd
∑
i 6=k

Ŵkiqi[n, s] + wdk [n, s]. (2.30)

Using the standard technique in [28], an achievable ergodic downlink rate over subcarrier s
and OFDM symbol n, assuming that the user has only statistical CSI is given by

Rk(n, s) = log2

1 +
pd

∣∣∣E [Ŵkk

]∣∣∣2
1 + pdvar

[
Ŵkk

]
+ pd

∑
i 6=k E

[∣∣Ŵki

∣∣2]
 , (2.31)

Note that we compute a separate rate for each (n, s). On an average, the rate over any time-
frequency grid will be

1

SNd

∑
n

∑
s

Rk(n, s), (2.32)

where Nd is the number of OFDM symbols used for downlink data transmission. Furthermore,

with ZF, the precoding matrix is given by Â[n, s] = αZFĜ[n, s]
(
Ĝ[n, s]HĜ[n, s]

)−1

, where the

normalization constant αZF is chosen to satisfy the power constant tr(Â[n, s]Â[n, s]H) = 1.

Numerical Results

In this section, we present numerical results to understand how often do we need to predict the
channel and compute the detector or the precoder in time without a significant reduction in
the achievable rate. Unless mentioned otherwise, we take M = 100, K = 8, L = 8, S = 256,
N = 17, and pd = puk = −5 dB. We consider a frequency-selective channel with uniform power
delay profile3 and we take the number of pilot subcarriers Np = KL. We further assume that
the pilots are equally spaced in frequency and are located over OFDM symbols 1− 7 as shown
in Figure 2.3. We consider normalized Doppler spread values in the range 0.01 to 0.03, which
corresponds to speeds in the range 80 to 240 km/h at a carrier frequency of 2 GHz and OFDM
symbol duration Ts = 66.67 µs.

3Note that channels with uniform power delay profile represent the worst case scenario [57]. Therefore, study
of such channels gives us an insight into the performance under the worst case conditions.
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Figure 2.3: Uplink pilots and downlink data transmission.
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Figure 2.4: Channel with rectangular spectrum ans sinc ACF, ARMA(2, 2) predictor (M = 100,
K = 8, L = 8, S = 256, N = 17, pd = puk = −5 dB).
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Figure 2.5: Jakes channel with Bessel ACF, AR(2) predictor (M = 100, K = 8, L = 8, S = 256,
N = 17, pd = puk = −5 dB).

Figure 2.4 plots the average downlink rate
(

1
S

∑S
s=1Rk(n, s)

)
as a function of the OFDM

symbol index for the case when the channel has sinc ACF while an ARMA(2,2) predictor with
coefficients taken from a Butterworth low pass filter of order 2 is used to capture the time
variations in the channel. The pilots are located over symbols 1 to 7 and they are equally
spaced in frequency as shown in Figure 2.3. Over these symbols, based on the observations,
Kalman estimates of the channel matrices are obtained. For symbol indices 8 to 17 channel
prediction is performed as only downlink data is transmitted over these symbols and there are
no uplink pilots. The ZF precoder computations over symbols 8 to 17 are based on the predicted
channel matrices. It can be observed that the downlink rate decreases as fdTs increases or as
time elapses with the increase in OFDM symbol index, since the channel becomes more and
more outdated. We also plot the case of no prediction, where instead of predicting the channel
from 8th-17th OFDM symbol, we just continue to use the ZF matrix computed at the 7th
OFDM symbol index over subsequent symbols while precoding. While no prediction performs
as well as ARMA(2,2) prediction at lower values of the normalized Doppler frequency fdTs, the
gain in rate due to prediction increases as fdTs increases. Also plotted is the channel update
approach where ZF matrix computations are obtained assuming uplink pilot transmissions over
all the symbols 1 to 17.

This plot gives us an idea about how often do we need to send uplink pilots without incurring
a rate reduction by a certain percentage. For example, the pilots can be sent every 4th OFDM
symbol in case of channel prediction and at fdTs = 0.02 if the system can tolerate a rate
reduction by about 8%. In other words, we can send 4 downlink symbols before turning to
uplink if we can tolerate a rate reduction by 8%.

Figure 2.5 plots the average downlink rate as a function of the OFDM symbol index for
the case when the channel has Bessel ACF while an AR(2) predictor is used to capture the
time variations in the channel. As before, observations are obtained over symbols 1 to 7 and
channel prediction is performed over symbols 8 to 17. For the case of channel prediction, the
ZF precoder computations over 8 to 17 are based on the predicted channel matrices. We also
plot the case of no prediction, where instead of predicting the channel from 8th-17th OFDM
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Figure 2.6: Study robustness of predictor on Jakes channel with Bessel ACF (M = 100, K = 8,
L = 8, S = 256, N = 17, pd = puk = −5 dB).

symbol, we just reuse the ZF matrix computed at the 7th OFDM symbol index over subsequent
symbols while precoding. Also, plotted is the channel update approach where the entire frame
of 17 OFDM symbols has uplink pilots so that the estimated channel matrices are used for ZF
matrix computations. This gives the best possible rate. Note that we do not account for the
pilot overhead in the rate calculations in the channel update approach. Similar conclusions are
obtained as in Figure 2.4.

Figure 2.6 plots the average downlink rate as a function of the OFDM symbol index for the
case when the channel has Bessel ACF while different predictors are used to model the time
variations of the channel matrix. It can be observed that an AR(2) predictor for which the
time-correlation takes the form of a Bessel function captures the dynamics of the Jakes channel
slightly better than an ARMA(2,2) predictor for which the time-correlation takes the form of
a sinc function. The gain in performance of the AR channel model is higher at higher Doppler
spreads. As expected, no prediction gives the worst downlink rate.

Figure 2.7a plot the average downlink rate as a function of the OFDM symbol index for the
case when the channel has a rectangular spectrum and sinc ACF while different predictors are
used to model the time variations of the channel matrix. It can be observed that an AR(2)
predictor with Bessel ACF is almost as good as an ARMA(2,2) predictor with sinc ACF and
in fact slightly better in capturing the dynamics of the channel with rectangular spectrum.
As expected, no prediction gives the worst downlink rate. Figure 2.7b plots the same for
order 6 predictors and it can be observed that a higher order ARMA(6,6) predictor is better
at capturing the time variations of the channel matrix with sinc ACF than an AR(6) model.
From these figures, it can be concluded that a channel with sinc autocorrelation is fairly robust
to predictor mismatch.

Figure 2.8 plots the average downlink rate vs. the OFDM symbol index for the case when
there is a mismatch between the actual Doppler spread of the channel and the Doppler spread
with which the predictor is designed. The channel has Bessel ACF and a normalized Doppler
frequency of 0.02 while an AR(2) predictor is used. There is a slight reduction in rate in case
of a mismatch, both when fdTs is smaller or larger than the true value.

Figures 2.9a and 2.9b plot the average downlink rate as a function of the OFDM symbol
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Figure 2.7: Study robustness of predictor on a channel with rectangular spectrum and sinc
ACF (M = 100, K = 8, L = 8, S = 256, N = 17, pd = puk = −5 dB).
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Figure 2.8: Effect of mismatch of fdTs, Jakes channel with Bessel ACF and fdTs = 0.02
(M = 100, K = 8, L = 8, S = 256, N = 17, pd = puk = −5 dB).

index for the case when there is a mismatch between the Doppler spread of the channel and the
Doppler spread with which the predictor is designed for a channel with rectangular spectrum
and for ARMA(2,2) and ARMA(6,6) predictors respectively. As can be seen in Figure 2.8,
the ARMA predictor seems more robust to fdTs mismatch than the AR predictor, since a sinc
function has a slower rate of decay compared to a Bessel function. Note that for a channel with
rectangular spectrum, the ACF takes the form of a sinc function while that for a Jakes channel
it takes the form of a Bessel function. Therefore, the channel decorrelates relatively faster for
a Jakes channel than it does for a channel with rectangular spectrum.

Figures 2.10a and 2.10b plot the average downlink rate over the 14th OFDM symbol as a
function of the model order for the AR and the ARMA models respectively. It can be observed
that the downlink rate increases marginally with the increase in the model order. It is, therefore,
justified to use predictor models of order 2 which are computationally less expensive without
compromising on the performance.

In Figure 2.11, we investigate the tradeoff between increase in rate due to reduced pilot
overhead and the decrease in rate due to channel outdatedness. We plot the average uplink
rate as a function of the inter-pilot spacing. Note that an inter-pilot spacing of one implies that
we have pilots located over every OFDM symbol, an inter-pilot spacing of two implies that we
have pilots located every 2nd OFDM symbol and so on. We observe that a larger inter-pilot
spacing can be tolerated for smaller Doppler spreads. For example, for a normalized Doppler
spread value of 0.01 which corresponds to a user speed of 80 km/h, the optimal inter-pilot
spacing can be 3 OFDM symbols, while for a normalized Doppler spread 0.02, the optimal
spacing is 1 OFDM symbol.

Conclusions

We investigated how often we need to predict the channel matrix and compute the ZF detector
or precoder over time without incurring a significant loss in rate. To this end, we considered
different predictors to model the time-variations of the channel. We observed that AR or
ARMA prediction gives substantial gains over no prediction particularly at higher Doppler
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Figure 2.9: Effect of mismatch of fdTs for a channel with rectangular spectrum and sinc ACF,
with fdTs = 0.02, (M = 100, K = 8, L = 8, S = 256, N = 17, pd = puk = −5 dB).
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Figure 2.10: Rate vs. model order (M = 100, K = 8, L = 4, S = 256, N = 14, pd = puk =
−5 dB).
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Figure 2.11: Average uplink rate vs inter-pilot spacing, Jakes channel with Bessel ACF, AR(2)
predictor (M = 100, K = 8, L = 4, S = 256, N = 100, and ρ = −10 dB).

spread values, while at low Doppler spreads, no prediction does reasonably well and performs
poorer than channel prediction only when the channel becomes highly outdated. We also looked
at how robust the predictors are to mismatches in the Doppler spreads. We found that for the
channel with rectangular spectrum and the ARMA predictor the loss in rate is marginal in the
presence of a mismatch because the channel decorrelates slowly over time, while that for the
Jakes channel and an AR predictor, the loss can be substantial for higher degree of mismatch.

2.1.2 System Validation of Frequency-domain Interpolation

In this section, we revisit the frequency-domain interpolation problem that was previously
addressed in Section 2.4 of Deliverable 3.2 [39]. The purpose is to study the performance-
complexity tradeoff for different algorithms, from a system-level perspective, and thereby draw
conclusion on their practical feasibility. We simulate the MaMi system performance for different
channel estimation and smoothing/interpolation algorithms over the frequency domain and
investigate the benefits from the advanced solutions developed in MAMMOET, taking into
account the related complexity increase.

Reference Configuration

The baseline scenario offers the lowest channel estimation performance but also the lowest com-
plexity. System parameters are aligned with the scenarios defined in Chapter 4 of Deliverable
D4.1. Concerning channel estimation, assuming the number of users, K, is smaller than the
channel coherence bandwidth expressed in number of subcarriers, the pilot interval is set to
P = K subcarriers. It enables channel estimation for all UEs based on a single uplink OFDM
symbol, where UE k sends pilots on subcarriers k, k +K, k + 2K, etc.

The channel estimated on a given subcarrier is reused over K neighboring subcarriers, in
such a way that the same channel matrix and precoder is used over each sub-block of K
subcarriers. This implies that blocks of K subcarriers are aligned over all users, such that
only one precoder computation every K subcarriers is required. As compared to this baseline
solution, any improved channel estimator will have the drawback that the same channel matrix
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Figure 2.12: Performance of a MaMi system under perfect CSI when increasing the number of
users.

and precoder cannot be reused anymore over neighboring subcarriers and hence K times more
precoder computations will be required.

When the number of users is relatively low as compared to the coherence bandwidth of
the channel, the duration of a channel estimation block could be made larger than K. It has
the benefit of accumulating more energy in the estimation phase, hence improving the channel
estimate SNR, while the deviation from the actual frequency-selective channel remains limited
as soon as the coherence bandwidth is sufficient. The corresponding trade-off is explored in
the next section. On the other hand, when the number of users grows too large, a denser pilot
scheme can still be used, at the cost of using multiple training OFDM symbols each addressing
a subset of users.

Benefits of Interpolation/Smoothing on System Performance

Before simulating the impact of frequency interpolation/smoothing, let us consider the dif-
ference between perfect CSI operation and the baseline channel estimator working on a per-
subcarrier basis. Figure 2.12 illustrates the progressive degradation under perfect CSI when
increasing the number of users. It uses a configuration fixed to M=200 antennas, ZF pre-
coding, 16-QAM, LDPC coding rate 3/4 and time/frequency parameters from 20-MHz LTE.
The channel is Rayleigh 72-tap i.i.d. A single-user configuration operates at BER 10−5 around
−11.5 dB SNR, which corresponds to a required SNR of 11.5 dB for the selected modulation
and coding scheme, given the 23-dB gain coming from the 200 antennas. With a few users
the degradation is limited to a fraction of dB and reaches 0.5 dB around 20 users, which is
consistent with the theory (only 181 degrees of freedom left instead of 200, leading to a loss of
10 · log10(200/181) = 0.43 dB in array gain).

Let us consider the baseline channel estimation instead of perfect CSI. When considering the
default P = K pilot density, allowing to estimate channels from all users from a single OFDM
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Figure 2.13: Performance of a MaMi system similar to Figure 2.12 but including a baseline
per-subcarrier channel estimation with as many pilot sequences as users in the system.

symbol, a trade-off appears between channel coherence and estimation SNR, as can be seen
in Figure 2.13. When having few users and hence a dense channel estimation scheme such as
P = 1 or 2, the frequency-domain representation of the channel has the best expected accuracy
with respect to the actual frequency-selective channel. However, individual subcarriers do not
benefit from a sufficient power level as UEs have to transmit on almost all subcarriers even
during training phase and do not have margin to boost the power on pilot tones. Hence, the
channel estimates suffer from a poor SNR which leads to a larger degradation of the operating
SNR. On the other hand, when using many users and a large spacing between pilot subcarriers,
such as P = 20 on Figure 2.13, the channel estimation misses a sufficient representation of
the frequency-domain channel characteristics, leading to a complete flooring of the system
performance. Hence, for the selected configuration and channel model, supporting 5 or 10
users with the baseline estimation scheme provides the best trade-off between both effects. The
degradation with respect to perfect CSI operation is around 4.5 dB.

In order to enable a working 200×20 MaMi configuration, different pilot densities have been
tested by reducing P (Figure 2.14). In such scenarios, any configuration denser than P = 20
subcarriers implies that multiple OFDM symbols are required in order to perform CSI estima-
tion for all users, e.g., up to 20 symbols when training on every subcarrier (P = 1), 10 symbols
when training on every second subcarrier (P = 2), and so on. Besides a reduced estimation
SNR, this excessive resource consumption is an additional reason to avoid performing channel
estimation on almost every subcarrier when the channel coherence is sufficient. Whatever the
value of P , the performance with the baseline channel estimation algorithm is not satisfactory.
The best value (P = 10) still leads a degradation of around 7 dB for the 200 × 20 system, as
compared to the perfect CSI case.

Let us introduce a frequency-domain interpolation/smoothing based on Section 2.4 of De-
liverable 3.2 [39]. It exploits the constraint on channel delay spread staying below the cyclic
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Figure 2.14: Performance of a 200×20 MaMi system including a baseline per-subcarrier channel
estimation with different values of P .

prefix by performing an FFT/IFFT-based interpolation. As can be seen on Figure 2.15, there
is no more penalty from using dense pilot schemes, because the related noise is averaged in
the smoothing/interpolation step. Only P = 20 leads to bad performance because the pilot
subsampling period is getting larger than the channel coherence bandwidth and starts missing
information. Any other value works and leads to a gain of 2 dB as compared to the baseline
estimator, although still 4.5 dB away from perfect-CSI performance. A recommendation could
be in this case P = 10, limiting the training overhead to 2 OFDM symbols.

For fewer users, the use of smoothing (Figure 2.16) also bring significant benefits, allowing
configurations with few users (K = 1 or 2) to operate only 2 dB away from the perfect CSI
case and bringing 1.5 to 2 dB of gain for average configurations (K = 5 or 10).

Complexity of the Interpolation Algorithm

Let us assume a system with N subcarriers (1200 out of 2048 in the LTE 20 MHz case) while the
channel is estimated for each user from a subset of S = N/P equally-spaced subcarriers spanning
the whole band. For instance, assuming a channel coherence over 15 neighboring subcarriers,
S = 80 covers the full band. This channel coherence is similar to the bound obtained when
using a cyclic prefix of 144 for 2048 subcarriers, hence it is a realistic assumption. The precoder
interpolation algorithm starts from precoders computed over the S subcarriers and interpolates
the precoder in-between, which is simpler than interpolating the channel first and having to
compute the precoder on all N subcarriers.

Based on Deliverable 3.2 [39], the interpolation can be implemented by applying an S-point
IFFT, zero-padding in order to up-sample by a factor P , and applying an N -point FFT. This
has to be performed on each of the M ×K entries of the channel precoder. Hence, a training
symbol containing uplink pilots will require MK additional N -point and S-point FFTs, while
the baseline processing of each (data or training) symbol requires M N -point FFTs only.

MAMMOET D3.3 Page 21 of 101



Hardware-aware signal processing for MaMi systems

−8.5 −8 −7.5 −7 −6.5 −6 −5.5 −5

10−4

10−3

10−2

10−1

100

SNR (dB)

B
E

R

MaMi 200 x 20, ZF, 16−QAM, LDPC 3/4

P = 1
P = 2
P = 5
P = 10
P = 20

Figure 2.15: Performance of a 200 × 20 MaMi system similar to Figure 2.14 but including
FFT-based frequency-domain smoothing, for different values of P .
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Figure 2.16: Performance of a MaMi system with different numbers of users but including
FFT-based frequency-domain smoothing, for P = K.
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Table 2.1: Relative complexity of different DSP components for a 100× 25 scenario.

Phase Downlink Uplink Training Frame average
Number OFDM symbols 7 5 2 14
Digital front-end [GOPS] 233 233 233 233
Inner modem [GOPS] 180 180 176 179
Interpolator [GOPS] 0 0 1440 206
Outer modem [GOPS] 16 236 0 108

Given that the complexity of an N -point FFT scales as N log2(N), we can neglect the role
of the S-point FFTs in the overall complexity analysis as S � N . Based on the assumptions
and complexity models presented in Chapter 4 of Deliverable 3.2 [39] and from [15], Table 2.1
illustrates the relative complexity of the different DSP components, in giga complex arithmetic
operations per second (GOPS). Digital front-end refers to antenna-level processing (FFT and
baseband filter); inner modem refers to user-level processing (precoding); interpolator refers to
precoder interpolation; outer modem refers to channel coding.

After averaging over the full frame, the impact of the interpolator is an increase in the
total complexity by 40%. This is certainly acceptable from the point of view of digital power
consumption, given the low share of digital computations in the total power budget. However,
the more critical element could be system dimensioning. Indeed, in order to allow real-time
operation, the precoder interpolation should take place during the training phase. This means
that even if this interpolator is not activated continuously, the peak complexity of the system
during training symbols should be increased by a factor 4.5 when including the interpolator
functionality ((1440 + 233 + 176)/(233 + 176)). This could be considered in view of the total
system cost.

If the size and complexity of the required DSP components become an issue, intermediate
solutions could offer a relevant trade-off. For instance, interpolating not to every subcarrier but
to every second subcarrier would reduce the overall complexity by at least a factor 2 based on
the FFT complexity, while still providing a very close approximation of the channel response
on every subcarrier and hence a gain close to the simulated 2 dB.

2.2 Receiver Processing Architectures with Low Bit-Width

The large number of transceiver chains required in MaMi base stations make the hardware
complexity and cost a challenge that has to be overcome in the MaMi implementation [4].
It has been proposed to build each transceiver chain from low-end hardware to reduce the
complexity [10], since MaMi appears to have an inherent robustness towards the distortion
caused by non-ideal transceivers. In this section, we quantify what this means for the resolution
of the analog-to-digital converters (ADCs) in MaMi deployments. While legacy systems require
around 15 bit quantization resolution per transceiver chain, we will show that MaMi systems
operate well using a substantially lower resolution. Section 2.2.1 analyzes the impact that low-
resolution ADCs have on the channel estimation and achievable rates. Since there is a tradeoff
between performance and energy consumption when having low-resolution ADCs, Section 2.2.2
further determines which resolution maximizes the energy efficiency.
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2.2.1 MaMi Base Stations with Low-Resolution ADCs

In this section, we perform an information theoretical analysis of a MaMi system with arbi-
trary ADCs and present an achievable rate, which takes quantization into account, for a linear
combiner that uses low-complexity channel estimation. The achievable rate is used to draw the
conclusion that ADCs with 3 bits are sufficient to achieve a rate close to that of an unquantized
system.

System Model

The uplink transmission from K single-antenna users to a MaMi base station with M antennas
is studied. The transmission is based on pulse-amplitude modulation and, for the reception, a
matched filter is used for demodulation. It is assumed that the matched filter is implemented as
an analog filter and that its output is sampled at symbol rate by an ADC with finite resolution.
Because the nonlinear quantization of the ADC comes after the matched filter, the transmission
can be studied in symbol-sampled discrete time.

Each user k transmits the signal
√
Pkxk[n], which is normalized,

E
[
|xk[n]|2

]
= 1, (2.33)

so that Pk denotes the transmit power. The channel from user k to antenna m at the base
station is described by its impulse response

√
βkhmk[`], which can be factorized into a large-

scale fading coefficient βk and a small-scale fading impulse response hmk[`]. The large-scale
fading varies slowly in comparison to the symbol rate and can be accurately estimated with
little overhead by both the user and the base station. It is therefore assumed to be known
throughout the system. The small-scale fading, in contrast, is a priori unknown to everybody.
It is independent across ` and follows the power delay profile

σ2
k[`] , E

[
|hmk[`]|2

]
, (2.34)

however, is assumed to be known. It is also assumed that σ2
k[`] = 0 for all ` /∈ [0, . . . , L−1].

Since variations in received power should be described by the large-scale fading only, the power
delay profile is normalized such that

L−1∑
`=0

σ2
k[`] = 1, ∀k. (2.35)

Base station antenna m receives the signal

ym[n] =
K∑
k=1

√
βkPk

L−1∑
`=0

hmk[`]xk[n− `] + zm[n]. (2.36)

The thermal noise of the receiver zm[n] is modeled as a white stochastic process, for which
zm[n] ∼ CN (0, N0). The received power is denoted

Prx , E
[
|ym[n]|2

]
=

K∑
k=1

βkPk +N0. (2.37)

Transmission is assumed to be done with a cyclic prefix in blocks of N symbols. The received
signal can than be given in the frequency domain as

ym[ν] ,
1√
N

N−1∑
n=0

ym[n]e−j2πnν/N =
K∑
k=1

hmk[ν]xk[ν] + zm[ν], (2.38)
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The Fourier transforms xk[ν] and zk[ν] of the transmit signal xk[n] and noise zm[n] are defined
in the same way as ym[ν]. The frequency response of the channel is defined as

hmk[ν] ,
L−1∑
`=0

hmk[`]e
−j2π`ν/N . (2.39)

Quantization

The inphase and quadrature signals are assumed to be quantized separately by two identical
ADCs with quantization levels given by QRe ⊆ R. The set of quantization points is denoted
Q , {a+ jb : a, b ∈ QRe} and the quantization by

[y]Q , arg min
q∈Q

|y − q| . (2.40)

To adjust the input signal to the dynamic range of the ADC, an automatic gain control scales
the input power by A. The ADC outputs

qm[n] ,
[√

Aym[n]
]
Q
. (2.41)

To analyze the effect of the quantization, the quantized signal is partitioned into one part ρym[n]
that is correlated to the transmit signal and one part em[n] that is uncorrelated:

qm[n] = ρym[n] + em[n] (2.42)

where the constant ρ and the variance of the uncorrelated part can be derived through the
orthogonality principle:

ρ =
E [qm[n]y∗m[n]]

E [|ym[n]|2]
, (2.43)

E
[
|em[n]|2

]
= E

[
|qm[n]|2

]
−

∣∣∣E [qm[n]y∗m[n]]
∣∣∣2

E [|ym[n]|2]
. (2.44)

The normalized mean-square error (MSE) of the quantization is denoted by

Q ,
1

|ρ|2
E
[
|em[n]|2

]
(2.45)

= Prx

E [|qm[n]|2]E [|ym[n]|2]∣∣∣E [qm[n]y∗m[n]]
∣∣∣2 − 1

 . (2.46)

An ADC with b-bit resolution has |QRe| = 2b quantization levels. In [41], the quantization
levels that minimize the MSE for a Gaussian input signal with unit variance are derived numer-
ically for 1–5 bit ADCs, both with arbitrarily and uniformly spaced quantization levels. The
normalized MSE of the quantization has been computed numerically and is given in Table 2.2
for the optimized quantizers. To obtain the MSE in Table 2.2 with the quantization levels
from [41], the input power has to be unity and the automatic gain control A = A? , 1/Prx.
Figure 2.17 shows how the quantization MSE in a four-bit ADC changes with imperfect gain
control. Even if the gain control varies between −8 dB and 5 dB from the optimal value, the
MSE is still better than that of a three-bit ADC.
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Table 2.2: Normalized quantization mean square-error Q/Prx

resolution b 1 2 3 4 5

optimal levels 0.5708 0.1331 0.03576 0.009573 0.002492
uniform levels 0.5708 0.1349 0.03889 0.01166 0.003506
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Figure 2.17: Quantization MSE for optimal four-bit ADC with imperfect AGC.

Channel Estimation

Channel estimation is done by receiving N = Np-symbol long orthogonal pilots from the users,
i.e., pilots xk[n] such that:

Np−1∑
n=0

xk[n]x∗k′ [n+ `] =

{
Np, if k = k′, ` = 0,

0, if k 6= k′, ` = 1, . . . , L− 1,
(2.47)

where the indices are taken modulo Np. To fulfill (2.47), Np ≥ KL. We will call the factor of
extra pilots µ , Np/(KL) the pilot excess factor. As remarked upon in [42], not all sequences
fulfilling (2.47) result in the same performance. Here we use the pilots proposed in [42]. Using
(2.42) and (2.47), an observation of the channel is obtained by correlation:

rmk[`] =
1

ρ
√
Np

Np−1∑
n=0

qm[n]x∗k[n+ `] (2.48)

=
√
βkPkNphmk[`] + e′mk[`] + z′mk[`], (2.49)

where

e′mk[`] ,
1

ρ
√
Np

Np−1∑
n=0

em[n]x∗k[n+ `], (2.50)

z′mk[`] ,
1√
Np

Np−1∑
n=0

zm[n]x∗k[n+ `] ∼ CN (0, N0) . (2.51)
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The linear minimum MSE estimate of the frequency response of the channel is thus

ĥmk[ν] =
L−1∑
`=0

√
βkPkσ

2
k[`]

βkPkNpσ2
k[`] +Q+N0

rmk[`]e
−j2π`ν/N (2.52)

and the error εmk[ν] , ĥmk[ν] − hmk[ν] has the variance 1 − ck, where the channel estimation
variance is given by

ck , E
[
|ĥmk[ν]|2

]
=

L−1∑
`=0

σ4
k[`]βkPkNp

σ2
k[`]βkPkNp +Q+N0

. (2.53)

Figure 2.18 shows the channel estimation variance. A resolution of 2 bits is enough to obtain
a channel estimation variance only 0.5 dB worse than in an unquantized system. With a res-
olution of 3 bits or higher, the channel estimation variance is practically the same as that of
the unquantized system. Increasing the pilot length, increases the channel estimation variance
in all systems. The improvement is, however, the largest when going from µ = 1 to µ = 2;
thereafter the improvement gets smaller.

Data Transmission

The uplink data is transmitted in a block of length N = Nu, which is separated from the pilot
block in time. The received signal is processed by a linear combiner and an estimate of the
transmitted signal is obtained by

x̂k[ν] =
1

ρ

M∑
m=1

wmk[ν]qm[ν], (2.54)

where the Fourier transform qm[ν] of qm[n] is defined in the same way as ym[ν] in (2.38) and
the combiner weights wmk[ν] are chosen as functions of the channel estimate. For example, the
MR and ZF combiners can be used.

If we code over many channel realizations, an achievable rate, independent of ν, is given
by [42]:

Rk = log2

(
1 +

|E [̂x∗k [ν]xk[ν]]|2

E [|̂xk[ν]|2]− |E [̂x∗k [ν]xk[ν]]|2

)
. (2.55)

To compute the expected values in (2.55), the estimate of the transmit signal in (2.54) can be
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expanded by using the relation in (2.42) and writing the channel as hmk[ν] = ĥmk[ν]− εmk[ν]:

x̂k[ν] = xk[ν]
√
βkPk

M∑
m=1

E
[
wmk[ν]ĥmk[ν]

]
+ xk[ν]

√
βkPk

M∑
m=1

(
wmk[ν]ĥmk[ν]− E

[
wmk[ν]ĥmk[ν]

])
+
∑
k′ 6=k

xk′ [ν]
√
βk′Pk′

M∑
m=1

wmk[ν]ĥmk′ [ν]

−
K∑
k′=1

xk′ [ν]
√
βk′Pk′

M∑
m=1

wmk[ν]εmk[ν]

+
M∑
m=1

wmk[ν]zm[ν] +
1

ρ

M∑
m=1

wmk[ν]em[ν], (2.56)

where the Fourier transform em[ν] of em[n] is defined as in (2.38). Note that only the first term
is correlated to the desired signal. By assuming that the channel is i.i.d. Rayleigh fading, it
can be shown that the other terms in (2.56)—channel gain uncertainty, interference, channel
estimation error, thermal noise, quantization error—are mutually uncorrelated and the variance
of each term can be evaluated. In [42], for example, it is shown, for one-bit ADCs, that the
variance of the last term in (2.56) asymptotically equals

E

∣∣∣∣∣1ρ
M∑
m=1

wmk[ν]em[ν]

∣∣∣∣∣
2
→ Q, L→∞, (2.57)

if the combiner is normalized such that
∑M

m=1 E
[
|wmk[ν]|2

]
= 1, which will be assumed here.

This can be generalized to general quantization in a similar way. The rate in (2.55) can then
be written as

Rk → log2

(
1 +

βkPkckG∑K
k′=1 βk′Pk′(1− ck′(1− I)) +Q+N0

)
, (2.58)

as L→∞, where the array gain and interference terms are defined as

G ,

∣∣∣∣∣
M∑
m=1

E
[
wmk[ν]ĥmk[ν]

]∣∣∣∣∣
2

, (2.59)

I , Var

(
M∑
m=1

wmk[ν]ĥmk′ [ν]

)
, (2.60)

where

G =

{
M

M −K
, I =

{
1, for MR combining,

0, for ZF combining.
(2.61)

It is shown in [42] that the limit in (2.58) can approximate the rate with negligible error also
for practical delay spreads L. The approximation can even be good for some frequency-flat
channels (L = 1) when the received power

∑K
k=1 βkPk is small relative to the noise power N0

or when the number of users is large and there is no dominant user, i.e., no user k for which
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Figure 2.18: The channel estimation variance with 5 users and a uniform power delay profile
σ2
k[`] = 1/L, for all k, `, and with equal received power from all users βkPk = β1P1, for all k.

The optimal quantization levels derived in [41] are used. Only integer pilot excess factors are
considered.

βkPk �
∑

k′ 6=k βk′Pk′ . For general frequency-flat channels, however, it is not true that the
quantization error variance vanishes with increasing number of antennas, as it does for large L
in (2.58); this seems to be overlooked in some of the literature [19, 35,36,62].

The rate Rk is plotted in Figure 2.19 for MR and ZF combining. The transmit powers are
allocated proportionally to 1/βk and channel estimation is done with Np = KL pilots, i.e., the
pilot excess factor µ = 1. It can be seen that low-resolution ADCs cause very little perfor-
mance degradation at spectral efficiencies below 4 bpcu. One-bit ADCs deliver approximately
40 % lower rates than the equivalent unquantized system and the performance degradation
becomes practically negligible with ADCs with as few as 3 bit resolution. Assuming that the
power dissipation in an ADC is proportional to 2b, the use of one-bit ADCs thus reduces the

MAMMOET D3.3 Page 29 of 101



Hardware-aware signal processing for MaMi systems

−10 −8 −6 −4 −2 0 2 4 6 8 10
1

2

3

4

5

6

7

8
µ = 1

SNR βkPk/N0 [dB]

ac
h
ie

va
b
le

ra
te
R
k

[b
p

cu
]

five-bit ADCs
four-bit ADCs
three-bit ADCs
two-bit ADCs
one-bit ADCs

(a) MR combining
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Figure 2.19: Rate of a system with 100 antennas and 10 users, where the power is proportional
to 1/βk and training is done with Np = KL pilots. The channel is i.i.d. Rayleigh fading with
uniform power delay profile hmk[`] ∼ CN (0, 1/L). The optimal quantization levels derived
in [41] are used.

ADC power consumption by approximately 6 dB at the price of 40 % performance degrada-
tion compared to the use of three-bit ADCs, which deliver almost all the performance of an
unquantized system.

In [25], it is pointed out that low-resolution ADCs create a near–far problem, where users
with relatively weak received power drown in the interference from stronger users. This is
illustrated with a ZF combiner in Figure 2.20, where it can be seen how the performance of
the weak users degrades if there is a stronger user in the system. Note that the performance
degrades also in the unquantized system, where the imperfect channel estimates prevent perfect
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Figure 2.20: Per-user rate Rk for users k = 2, . . . , K when user k = 1 has a different receive
SNR. The system has 100 antennas and K = 10 users, the channel is i.i.d. Rayleigh with
uniform power delay profile and is estimated with Np = KL pilots. The optimal quantization
levels derived in [41] are used.

suppression of the interference from the strong user. In the quantized systems, there is a second
cause of the performance degradation: With quantization, the pilots are no longer perfectly
orthogonal and the quality of the channel estimates is negatively affected by interference from
the strong user. This effect can be seen in (2.53), where Q scales with the received power Prx

and thus with the power of the interferer.
Figure 2.20, however, shows that the near–far problem does not become prominent until the

received power from the strong user is around 10 dB higher than that of the weak users, where
the data rate is degraded by approximately 15 % in the unquantized system. The degradation
is larger in the quantized systems but the additional degradation due to quantization is almost
negligible when the resolution is 3 bits or higher. With one-bit ADCs and one strong user with
10 dB larger received power, the degradation of the data rate increases to almost 50 %. Power
control among users, however, can eliminate the near–far problem altogether, but at the cost of
reducing the flexibility to use power control to optimize the system performance. Power control
that eliminates received power difference is suitable for maximizing the minimum rate in the
cell, but less suitable for maximizing the sum rate.

Conclusion

We have derived an achievable rate for a single-cell MaMi system that takes quantization into
account. The derived rate shows that ADCs with as low resolution as 3 bits can be used with
negligible performance loss compared to an unquantized system, also with interference from
stronger users. For example, with three-bit ADCs, the data rate is decreased by 4 % at spectral
efficiency of 3.5 bpcu in a system with 100 antennas that serves 10 users. It also shows that four-
bit ADCs can be used to accommodate for imperfect automatic gain control—imperfections up
to 5 dB still result in better performance than the three-bit ADCs. One-bit ADCs can be built
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from a single comparator and do not need a complex gain control (which ADCs with more
than one-bit resolution need), which simplifies the hardware design of the base station receiver
and reduce its power consumption. The derived rate, however, shows that one-bit ADCs lead
to a significant rate reduction. For example, one-bit ADCs lead to a 40 % rate reduction in a
system with 100 antennas that serves 10 users at spectral efficiencies of 3.5 bpcu. In the light
of the good performance of three-bit ADCs, whose power consumption should already be small
in comparison to other hardware components, the primary reason for the use of one-bit ADCs
would be the simplified hardware design, not the lower power consumption.

2.2.2 Optimized Bit-Width for Energy Efficiency

In this section, we perform a parametric energy efficiency analysis of the MaMi uplink for the
entire base station receiver system with varying ADC resolutions. The analysis shows that, for
a wide variety of system parameters, ADCs with intermediate bit resolutions (4 - 10 bits) are
optimum in the energy efficiency sense, and that using very low bit resolutions actually results
in degradation of energy efficiency.

Energy Efficiency Metric

Energy efficiency η, as a function of ADC bit resolution b, for the uplink of a MaMi system is
defined as

η(b) =
C(b)

Pc(b)

[
bit

Joule

]
, (2.62)

where C [bit/s] is the uplink system sum rate and Pc [W ] is the total power consumption of
the MaMi base station (ADCs together with all other receiver blocks, analog and digital).

Dependencies of sum rate and power consumption on ADC resolution b need to be resolved
separately. To this end, we first turn to finding an appropriate model for describing the effects
that ADCs have on system performance.

ADC Performance Modeling

The ADC used in this analysis is instantaneous, memoryless and uniform with a finite number
of quantization levels (Nq = 2b in total). Additionally, sampling is assumed to be performed
at Nyquist rate. Although uniform quantization is not optimum in the MMSE sense (unless
the ADC input is uniformly distributed), it was nevertheless chosen because it is both close to
hardware implementation reality [22] and gives way to simple and tractable modeling.

After sampling, the ADC performs a nonlinear mapping of values from R to a discrete set
of quantization levels, resulting in distortion. The nature of this distortion is twofold:

• If the amplitude of input discrete-time signal x is larger than some predefined overload
level Xol, the sample is represented by one of the “outer” quantization levels, resulting in
overload distortion.

• If |x| < Xol, samples are rounded to the nearest quantization level, yielding granular
noise.

In practical systems, an ADC is usually preceded by an automatic gain control (AGC) vari-
able gain amplifier that is used to conveniently set the dynamic range of the input signal to the
ADC. The primary purpose of AGC is to minimize overload distortion. A welcome consequence
of a properly controlled dynamic range of the input signal is a particularly convenient model for
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the ADC distortion. Namely, it was shown in [56] that, for a uniform quantizer with normally
distributed x, the output can be modeled as

y = x+ q, (2.63)

where the additive noise term q can very well be approximated as being

• uniformly distributed,

• uncorrelated with the input,

• white.

Additionally, the variance of q can be shown to be

E{q2} =
1

3
X2
ol 2−2b. (2.64)

This commonly used model is usually referred to as the pseudoquantization noise (PQN) model.
The quality of the approximation in the PQN model is determined by properly setting the
dynamic range of x.

A commonly used design parameter for the AGC is the input backoff, defined as

µ =
X2
ol

E{x2}
. (2.65)

In this work, µ is set so that the variance of overload distortion is 20 dB below the variance
of granular noise. Corresponding values of µ, for Xol = 1 and bit resolutions b ∈ [2, 25], are
shown in Figure 2.21, together with a linear fit (chord) that can be alternatively used in place
of the actual values.
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Figure 2.21: Input backoff µ values that result in overload distortion power 20 dBs below
granular noise power.

One metric—correlation between x and q–.is important for the subsequent analysis. It was
found that, using the presented values of µ for the AGC, the crosscorrelation coefficent between
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x and q was always below 0.018, which essentially means that in this setup (uniform ADC with
Gaussian inputs and a properly set up AGC), x and q can be considered uncorrelated. This
result will prove to be important in the system model analysis.

System Model and Sum rate Calculation

This work analyzes the following setup:

• Uplink of a single-cell MaMi system with M antennas and K users;

• Uncorrelated Rayleigh block fading over T symbols;

• Channel estimation is performed using orthogonal pilot sequences of length τ in the uplink.
Estimation is performed using the least-squares (LS) approach;

• Channel estimates used for linear receiver processing. Maximum ratio (MR) and zero-
forcing (ZF) combining receivers are considered.

A system model of the uplink, where ADCs are substituted by quantization noise sources
following the PQN model and AGCs precede ADCs, is illustrated in Figure 2.22.
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Figure 2.22: Uplink system model with quantization noise.

User k sends a data symbol xk. User symbols are collected in a vector x = (x1 x2 . . . xk)
T ,

with E[xxH ] = IK . Single-carrier, narrowband transmission is assumed, and thus the propaga-
tion channel is represented by the M ×K matrix G = HD1/2, where the M ×K H contains
small-scale fading coefficients. The elements of H are zero-mean complex Gaussian distributed
with unit variance.

The K ×K matrix D1/2 is a diagonal matrix of combined amplitude path gains and large-
scale fading. The (m, k) element of G can be written as gmk = hmk

√
βk, with hmk being the

narrowband small-scale fading coefficient between the kth user and mth antenna and βk the
power path gain and large-scale fading, taken jointly. It should be noted that, if some uplink
power control is employed, its effects will also be modeled by β. In the case of ideal uplink
power control, all βk = 1.

Assuming that every user transmits with equal transmit power pu, the signal model at the
receive antennas is

y =
√
puGx+ n =

√
puHD

1/2x+ n, (2.66)
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where n is the vector of input-referred thermal noise at each antenna: n = (n1 n2 . . . nm)T ,
with thermal noise powers at each antenna assumed equal with value pn.

The received signal yi will experience variations of average power due to LS and fading,
and its power, averaged over both small-scale fading and large-scale fading is determined so
that optimum gains of AGCs can be determined. By doing this, the optimum gain of AGC in
receiver branch i is found as

γi =
2

µ∗
(
pu
∑K

k=1 βk + pn

) . (2.67)

Amplitude AGC gains
√
γi can be conveniently collected in a diagonal matrix Γ1/2.

The signal after the AGC is

ỹ = Γ1/2y =
√
pu Γ1/2HD1/2x+ Γ1/2n =

√
pu H̃x+ ñ. (2.68)

Finally, quantization noise is added. With the assumption that Xol = 1, variance of quanti-
zation noise in the ith chain is

pq,i = E
[
|qi|2

]
=

2

3
2−2bi . (2.69)

Signal model after the ADC:

z = ỹ + q =
√
pu H̃x+ ñ+ q. (2.70)

The vector q contains the complex quantization noise samples from all the antennas.
Channel estimation in the uplink is performed using pilot sequences that are orthogonal

in space and time and τ symbols long. More precisely, pilot sequences for all K users are
represented by a K×τ matrix Φ =

√
puτΨ, where in turn Ψ is a K×τ matrix with orthonormal

rows: ΨΨH = IK×K . This type of matrices is optimal for LS pilot-based channel estimation [5].
When a block of pilot symbols Φ is transmitted, the received signal is

Z = H̃Φ + Ñ + Ξ, (2.71)

where Ñ = [ñ1 ñ2 . . . ñτ ] and Ξ = [q1 q2 . . . qτ ] are thermal and quantization noise vectors
for each channel use (symbol), conveniently stacked in matrix form. The channel estimate is
then

ˆ̃
H = ZΦ† = H̃ +

(
Ñ + Ξ

)
Φ† = H̃ + Ĥε. (2.72)

Linear processing matrices for the uplink are formulated from the channel estimates:

• MR: ÂMR =
ˆ̃
H ,

• ZF: ÂZF =
ˆ̃
H

(
ˆ̃
H

H ˆ̃
H

)−1

.

The MIMO receiver applies the processing matrix to estimate the vector of symbols sent by the
users:

x̂ = Â
H
z =
√
pu Â

H
H̃x+ Â

H
ñ+ Â

H
q. (2.73)

It can be shown that Â can be split into a sum of terms, one being the “true” processing
matrix (based solely on the actual channel H̃) and the other an error term that is a consequence
of channel estimation errors, namely:
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• MR: ÂMR = AMR +AMR,ε = H̃ +AMR,ε,

• ZF: ÂZF = AZF +AZF,ε = H̃
(
H̃

H
H̃
)−1

+AZF,ε.

This simple decomposition allows for splitting the estimate of user data symbol xk, pertaining
to kth user, into a wanted signal term and a noise term:

x̂k = x
(w)
k + wk =

√
pua

H
k h̃kxk + wk, (2.74)

where ak is the kth column of A. The additive noise term wk contains residual interuser
interference and effects of thermal and quantization noise during channel estimation and data
transmission phases.

One important observation (the proof of which is omitted here for brevity) is that the
constituent terms of wk are all uncorrelated and Gaussian. This is a consequence of several
factors, namely: quantization noise being uncorrelated with the input to the ADC, noise in
channel estimation phase being independent from the one in data transmission phase, and a
large number of antennas (so that the central limit theorem applies).

The signal-to-interference-thermal-and-quantization-noise ratio (SINQR) for kth user is then
calculated as

SINQRk =
Ex,n,q{|x(w)

k |2}
Ex,n,q{|wk|2}

. (2.75)

The ergodic sum rate of the system is the sum of achievable rates for each user, averaged
over channel realizations:

C = B
T − τ
T

K∑
k=1

E {log2(1 + SINQRk)} , (2.76)

with B being the bandwidth of the system.

Power Consumption Model

In this section, system setup choices and models are aimed to be as close to hardware reality
as possible. To this end, we focus on a particular type of ADCs - namely, the pipeline ADC.
This type of ADCs is typically designed for mid-range sampling rates and bit resolutions and
has power consumption that is comparatively superior to other types of ADCs [34], [59].

For the power consumption model of the ADCs, this work adopts a theoretical model de-
scribed in [58]. This model is a theoretical bound on power dissipation of pipeline ADCs that
was nevertheless shown to correctly predict the trends observed in actual pipeline ADC designs.
As such, it can be of use in a parametric power consumption model, where the character of
functional dependency between b and power consumption is of primary interest.

MAMMOET D3.3 Page 36 of 101



Hardware-aware signal processing for MaMi systems

ADC resolution

2 4 6 8 10 12 14

P
/f

s
(p

J
)

10-2

10-1

100

101

102

103

104
Pipeline ADC energy consumption

90 nm

130, 65 nm

theoretical bound for 90 nm

(thermal-noise limited)

(process-limited)

Figure 2.23: ADC power consumption model, compared with actual ADC designs.

As it can be seen in Figure 2.23, where the model from [58] is compared with actual pipeline
ADC designs collected in [46], the functional dependency in the model matches the trend
exemplified by best ADC designs. However, there is a gap (about two orders of magnitude
wide) between the model and the designs. This implies that a correction factor Ω can be used
if the model is to be matched to state-of-the-art designs. Therefore, the model can be given as

PADC = Ω
(
c1b+ c2b

2 + c322b + c4b2
2b
)
fs, (2.77)

where fs is the Nyquist sampling rate of the ADC and coefficients c1 through c4 depend on
ADC circuit parameters [58, Eq. (27)].

Another characteristic of this model that is worth pointing out is that the power consumption
is linear with sampling rate fs. This trend is also shown to be correct by analyzing the actual
ADC designs in [46]; it only breaks down for high sampling rates (on the order of 100 MHz).

In order to show the complete picture regarding the energy efficiency of a MaMi base station
in the uplink, power consumption of the remaining blocks (analog and digital) needs to be
taken into account. This proves to be an extremely challenging task due to wide variability of
available system designs and apparent lack of unifying theoretical information. Therefore, this
work adapts a parametric approach to model the total power consumption.

Namely, power consumption of the blocks excluding the ADCs, denoted by Prest, is normal-
ized by PADC,ref = Ω

(
c1bref + c2b

2
ref + c322bref + c4bref2

2bref
)
fs, where bref is an arbitrarily chosen

bit resolution. This yields the architecture factor α:

α =
Prest

2MPADC,ref
. (2.78)

Total power consumption of the BS in the uplink can then be expressed as

Ptot = 2MPADC + Prest = 2M(PADC + αPADC,ref ). (2.79)
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Results

The aim of this section was to provide an initial overview of the energy efficiency trends as var-
ious system parameters change. To provide this initial insight, system performance simulations
have been performed across a wide variety of system parameters.

Alongside the primary system parameter b, several other important system parameters have
been considered, namely M , K, T , τ and preprocessing SNR = pu/pn (defined with large-scale
fading normalized to the level of thermal noise). In order to reduce the dimensionality of the
analysis, two auxiliary system parameters have been introduced, namely spatial loading (K/M)
and temporal loading (K/T ).

In addition to all the assumptions on system setup listed before, it was assumed that perfect
power control was performed in the uplink (so all βk = 1). In all the analyses, reference bit
resolution bref was set to 2.

For the first set of results, α and SNR were swept together with b. Additionally, M = 100,
τ = K, K/T = 0.01 [users/coherence time], K/M = 0.1 [users/antenna]. Results are shown in
Figure 2.24.
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Figure 2.24: Energy efficiency as a function of architecture parameter α and SNR. Left: MR,
right: ZF

Optimum energy efficiency points are denoted by the circular marker. Results indicate that,
as the power consumption of ADCs becomes comparable to the power consumption of all the
other blocks, from energy efficiency point of view it is beneficial to use smaller bit resolutions.
However, in practical system designs it can be expected that ADC power consumption is only
a small fraction of the total power consumption when the ADC resolution is low.

Just to provide an illustrative example, the BS power model presented in [16] was used
with the parameters listed above and yielded Prest = 43.3W . On the other hand, at bref = 2,
using a correction factor Ω = 100, the ADC power consumption model described above gave
2MPADC = 3 mW , resulting in α = 1.5 × 104. While this is by no means a definite power
number, it serves to illustrate what are reasonable orders of magnitude for α.

Some other interesting insights can be drawn from this result, for example: a system using
MR proves to be quite insensitive to changes in SNR and b, indicating that an overwhelmingly
dominant impairment is the inter-user interference and that playing with ADC resolutions will
not yield a considerable impact on the energy efficiency; if ZF is used, the dynamics are much
more pronounced and show that by going from a system design with a large SNR and large α
(“wasteful” system) to a system where SNR and α are low (a more “economical” system) allows
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for choosing ADCs with smaller resolutions. Nevertheless, all systems with a “reasonable” α
(say 10 - 105) should use ADCs with resolutions in the range 4-10 bits.

In order to focus more on what are the improvements and degradations of energy ef-
ficiency when using different ADC resolutions, we turn to a different analysis where spa-
tial load K/M and M are swept together with b, and additionally SNR = 0 dB, K/T =
0.01 [users/coherence time] with τ = K and α = 104, results shown in Figure 2.25.
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Figure 2.25: Energy efficiency as a function of M , K and b. Left: MR, right: ZF.

What these results show is that going from optimum ADC resolution to a very low one
incurs a substantial degradation of the energy efficiency (up to 2.6 times in case of ZF!). This is
due to sum rate being degraded while the overwhelming power consumption of the other blocks
“drowns” the savings in power consumption of the ADCs. Another interesting observation is
that, in the ZF case, increasing the number of antennas can help recover the energy efficiency
lost by going to lower bit resolutions.

Finally, we take a look at the interplay between the channel estimation length and b in
the context of energy efficiency. We analyze a system with K/M = 0.1 [users/antenna], while
varying b, SNR and training length. Architecture parameter α is again fixed to 104. What
is plotted is the normalized training length τ/T that maximizes the energy efficiency, results
shown in Figure 2.26.
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Figure 2.26: Normalized training length that maximizes energy efficiency. Left: MR, right: ZF.
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The conclusions from here are that ZF is much more sensitive to quantization noise during
training; even in the case of high temporal loading (indicating fast fading), when there is
little room to afford for channel estimation, it is beneficial to train the system longer than
the minimum required time in order to compensate for the effects of quantization. The effect
becomes more pronounced as the fading becomes slower and channel estimation is not so costly
in terms of time. On the other hand, we see that the system using MR is so overwhelmed by
inter-user interference that additional training does little to improve the sum rate (and through
it also energy efficiency).

2.3 Detection with Robustness Against Uplink Interfer-

ence

The man-made interference is one of the major limiting factors in multi-user communications.
The array gain that is obtained in MaMi makes the system robust to non-coherent interference
sources, which includes conventional multi-user interference, hardware distortion, and receiver
noise. However, the necessary reuse of pilot sequences across cells create a pilot contamination
effect, where it seems impossible for the BS to coherently combine the desired signals from a UE
without also coherently combining the interfering signal from the UEs that use the same pilot.
In particular, T. Marzetta proved this result in his seminal paper [40] under the assumptions of
maximum ratio combining (MRC) and independent Rayleigh fading channels. The implication
was that pilot contamination creates a finite upper limit on the SE, as the number M of
antennas goes to infinity. The same result has been proved for ZF and single-cell MMSE (S-
MMSE) detection. Hence, it appears that MaMi cannot be made robust to pilot contamination.

In this section, we show that this is not the case in general, but only for independent
Rayleigh fading channels and when heuristic detection schemes are used. The optimal M-
MMSE detection scheme, presented in Section 2.1 of Deliverable 3.2 [39], is robust also to pilot
contamination in all practical cases, meaning that it can reject also the coherent interference
caused by pilot contamination and, in theory, make the SE grow without bound as we increase
the number of antennas. This result is proved analytically in the MAMMOET publication [6],
while we only provide an explanation and numerical validation in this section.

2.3.1 Definition of Optimal M-MMSE Detection

Consider a multi-cell scenario with L cells, each comprising a BS with M antennas and K UEs.
There are K pilot sequences and the kth UE in each cell uses the same pilot. The received
signal yj ∈ CM at BS j is

yj =
L∑
l=1

K∑
i=1

√
ρhjlixli + nj (2.80)

where ρ is the transmit power, xli is the unit-power signal from UE i in cell l, hjli ∼ CN (0,Rjli)
is the channel from this UE to BS j, Rjli ∈ CM×M is the channel covariance matrix, and
nj ∼ CN (0, IM) is the independent noise at BS j.

Using a total uplink pilot power of ρtr per UE and standard MMSE channel estimation
techniques, BS j obtains the estimate

ĥjli = RjliQ
−1
ji

(
L∑
l′=1

hjl′i +
1√
ρtr

nji

)
∼CN (0,Φjli) (2.81)
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of hjli, where

Qji =
L∑
l′=1

Rjl′i +
1

ρtr
IM , Φjli = RjliQ

−1
li Rjli. (2.82)

The estimation error h̃jli = hjli − ĥjli ∼ CN (0,Rjli −Φjli) is independent of ĥjli.
We denote by vjk ∈ CM the detection vector associated with UE k in cell j. Using standard

techniques, the ergodic capacity is lower bounded by

SEjk = E {log2 (1 + γjk)} [bit/s/Hz] (2.83)

where the expectation is with respect to the channel estimates is different coherence interval
and the instantaneous SINR in a coherence interval is

γjk =
|vH
jkĥjjk|2

vH
jk

( ∑
(l,i)6=(j,k)

ĥjliĥH
jli + Zj

)
vjk

where Zj depends on the channel estimation error as

Zj =
L∑
l=1

K∑
i=1

(Rjli −Φjli) +
1

ρ
IM . (2.84)

As proved in Section 2.1 of Deliverable 3.2 [39], in a given channel coherence interval, γjk is
maximized by

vjk =

(
L∑
l=1

K∑
i=1

ĥjliĥ
H

jli + Zj

)−1

ĥjjk. (2.85)

This detection scheme is called multi-cell MMSE (M-MMSE) detection. The “multi-cell” notion
is used to differentiate it from the single-cell MMSE (S-MMSE) detection scheme, which is
widely used in the literature and is defined as

vjk =

(
K∑
i=1

ĥjjiĥ
H

jji + Z̄j

)−1

ĥjjk

with Z̄j being given by

Z̄j =
K∑
i=1

Rjji−Φjji +
L∑
l=1
l 6=j

K∑
i=1

Rjli +
1

ρ
IM . (2.86)

The main difference from (2.85) is that only channel estimates in the own cell are computed in
S-MMSE, while ĥjliĥ

H
jli −Φjli is replaced with its average (i.e., zero) for l 6= j. The computa-

tional complexity of S-MMSE is thus lower compared with M-MMSE, but the pilot overhead
is identical since the same pilots are used to estimate both intra-cell and inter-cell channels.

The S-MMSE scheme coincides with M-MMSE when there is only one isolated cell, but it is
generally different and lacks the ability to suppress interference from strongly interfering UEs
in other cells (e.g., located at the cell edge). This might seem as a marginal difference, but it
makes a fundamental difference when it comes to robustness to pilot contamination.

MAMMOET D3.3 Page 41 of 101



Hardware-aware signal processing for MaMi systems

BS

UE

Interfering UEs

Figure 2.27: Multi-cell setup with one cell-edge UE in the center cell and one cell-edge UE in
each of the neighboring cells, all using the same pilot sequence.

Consider UE i in cell j and UE i in cell n, which use the same pilot sequence. From (2.81)
we can see that the estimates ĥjji and ĥjni of their channels to BS j are correlated as

E{ĥjniĥH

jji} = RjniQ
−1
li Rjji. (2.87)

This relationship can also be expressed as

ĥjni = RjniR
−1
jjiĥ

H

jji (2.88)

if Rjji is invertible. If RjniR
−1
jji is a scaled identity matrix, then the two estimates are parallel.

This implies that the covariance matrices are equal up to a scaling factor, which holds under
independent Rayleigh fading, but not in general. For example, for a given pair of identical
covariance matrices, it is sufficient that the elements are perturbed in a small independent
random fashion to break the condition of being identical.

In general, the channel estimates of two UEs that use the same pilot are pointing in different
directions and it is then possible for BS j to reject the interference from the interfering UE in
cell n, while keeping a non-zero fraction of the desired signal from its own UE. This is exactly
what the optimal M-MMSE combining does and which makes it robust to both conventional
interference and pilot contamination.

2.3.2 Numerical Validations

To illustrate the fact that pilot contamination generally does not limit the asymptotic SE, when
M-MMSE detection is being used, we numerically evaluate the multi-cell scenario in Figure 2.27
with K = 1 one UE per cell and L = 7 cells. All UEs use the same pilot sequence and are at the
cell edge near the center cell. This is a challenging setup with very high pilot contamination,
and it will show the robustness result very clearly.
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Figure 2.28: SE as a function of the number of BS antennas, for covariance matrices based on
the exponential correlation model in (2.89).

The asymptotic SE behavior is considered in Figure 2.28 using the exponential correlation
model where the m,nth entry of the covariance matrix R between an arbitrary UE and BS is

[R]m,n = βr|n−m|eı(n−m)θ (2.89)

where β is the average pathloss, r ∈ [0, 1] is the correlation factor between adjacent antennas
and θ is the angle-of-arrival, as seen from the BS. This model is selected since it provides full-
rank covariance matrices whenever r < 1, thus the results shown in this section are not due to
any spatial sparseness. We consider r = 0.5 and the detection schemes M-MMSE, S-MMSE,
and MRC. The average SNR observed at a BS antenna in the center cell is set equal for the pilot
and data transmission: ρtr(Rjli)/M = ρtrtr(Rjli)/M . It is −7.0 dB for the desired UE and −8.6
dB for each of the interfering UEs. Figure 2.28 shows that S-MMSE provides slightly higher
SE than MRC, but both converge to an asymptotic limit of around 0.8 bit/s/Hz as the number
of antennas grows. In contrast, M-MMSE provides an SE that clearly grows without bound.
This means that the effective SINR grows linearly with M , as seen from the fact that the SE
grows linearly with a logarithmic horizontal scale. This validates the robustness towards pilot
contamination that M-MMSE achieves: it provides an array gain (i.e., signal gain proportional
to M) for the desired UE, while the interference from the contaminating UEs does not grow
with M .

Next, we consider an alternative channel covariance model, which builds upon independent
Rayleigh fading, but includes independent log-normal large-scale fading over the array. The
covariance matrix between an arbitrary UE and BS is

R = βdiag
(
10f1/10, . . . , 10fM/10

)
(2.90)

where β is the average pathloss, fm ∼ N (0, σ2) and σ is the standard deviation. The SE
with M = 1000 and varying standard deviation σ of the large-scale fading variations is shown
in Figure 2.29. M-MMSE provides no benefit over S-MMSE or MRC in the special case of
σ = 0, where all covariance matrices are linearly dependent (scaled identity matrices). This
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Figure 2.29: SE as a function of the standard deviation of the independent large-scale fading
variations, for covariance matrices modeled by (2.90).

is a special case that has received massive attention from academic researchers. However, M-
MMSE provides substantial gains as soon as there are some minor variations in channel gain
over the array, which effectively make the covariance matrices linearly independent. The range
of fading variations in this simulation can be compared with the measurements in [20], which
show large-scale variations of around 4 dB over a MaMi array.

Conclusion

This study shows that M-MMSE combining is robust to man-made interference, such as pilot
contamination, in the sense that it generally does not cause a fundamental upper limit on the SE
in MaMi, despite previous studies that have pointed towards that direction. There are indeed
special cases where the channel covariance matrices are linearly dependent, which make the
channel estimates of the desired and interfering UEs parallel such that linear detection cannot
remove the interference. In general, the covariance matrices and the channel estimates are not
linearly dependent, thus M-MMSE detection can extract the desired signal while rejecting the
pilot contamination. There is a power loss, as compared to the contamination-free case, but
the SE still grows without bound as M →∞. Importantly, this means that MRC is generally
not asymptotically optimal in MaMi.
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Chapter 3

Cross Layer and System Operation

This chapter consider the impact that MaMi signal processing algorithms have, beyond the
physical baseband processing. Section 3.1 and Section 3.2 describe and analyze power control
algorithms that exploit the channel hardening properties to reduce the complexity. The impact
that MaMi has on other systems, in terms of OOB radiation, is analyzed in Section 3.3.

3.1 Uplink Pilot and Payload Power Control:

Throughput-Fairness Trade-Offs

This section deals with pilot and data power allocation in uplink single-cell MaMi systems, under
ideal link adaptation. Compared to conventional power control in single-antenna systems, power
control in MaMi networks is a relatively new topic. Accurate channel estimates are needed at the
BS for carrying out coherent linear processing, e.g. uplink detection and downlink precoding.
Due to the large number of antennas in MaMi the instantaneous channel knowledge, which is
commonly assumed to be known perfectly in the power control literature, is hard to obtain
perfectly. The literature on power control for multi-user MIMO, and even jointly with optimal
beamformer design, see for example [7, 55] and the references therein, did not consider the
channel estimation error explicitly and the design criterion was based on SE.

We will present power control schemes that optimize the ergodic SE based on only the
large-scale fading, which takes into account the channel estimation errors and at the same time
simplify the system design since the same power control coefficients are used can be used for all
subcarriers and as long as the large-scale fading characteristics are fixed. Since the analysis is
based on ergodic SE, an ideal link adaptation is assumed. The power control is formulated as
optimization problems for two different objective functions: the weighted minimum SE among
the users and the weighted sum SE. A closed-form solution for the optimal length of the pilot
sequence is obtained. The optimal power control policy for the former problem is found by
solving a simple equation with a single variable. Utilizing the special structure arising from
imperfect channel estimation, a convex reformulation is found to solve the latter problem to
global optimality in polynomial time. The gain of the optimal joint power control is theoretically
justified, and is proved to be large in the low SNR regime. Simulation results also show the
advantage of optimizing the power control over both pilot and data power, as compared to the
cases of using full power and of only optimizing the data powers as done in previous work.

The questions we want to answer by carrying out this analysis are:

1. Is power control on the pilots needed for MaMi systems? If the answer is yes, how much
can we gain from jointly optimizing the pilot power and data power, as compared to
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always using equal power allocation or just power control over the data power?

2. In which scenarios can we gain the most from joint optimization?

3. What intuition can be obtained from the optimal power control? This includes the pilot
length, and how the pilot and payload power depend on the estimation quality and signal
to noise ratio (SNR).

We focus on the main results and algorithms in this sections, while the derivations are
available in the MAMMOET publication [11].

3.1.1 System Model

Consider an uplink single-cell MaMi system with M antennas at the BS and K single-antenna
users. The K users are assigned K orthogonal pilot sequences of length τp for K ≤ τp ≤ T ,
where T is the number of symbols in the coherence interval in which the channels are assumed
to be constant. The channels are modeled to be independent Rayleigh fading. The flat fading
channel matrix between the BS and the users is denoted by H ∈ CM×K , where the kth column
represents the channel response to user k and has the distribution

hk ∼ CN (0, βkI), k = 1, 2, . . . , K, (3.1)

which is a circularly symmetric complex Gaussian random vector. The variance βk > 0 repre-
sents the large-scale fading including path loss and shadowing, and is normalized by the noise
variance at the BS to simplify the notation. The large-scale fading coefficients are assumed to
be known at the BS as they are varying slowly (in the scale of thousands of coherence intervals).
The power control proposed in this work only depends on the large-scale fading which makes
it feasible to optimize the power control online.

In each coherence interval, UE k transmits its orthogonal pilot sequence with power pkp to
enable channel estimation at the BS. We assume that MMSE channel estimation is carried out
at the BS to obtain the small-scale coefficients. This gives an MMSE estimate of the channel
vector from UE k as

ĥk =

√
τppkpβk

1 + τppkpβk

(√
τppkphk + nkp

)
(3.2)

where nkp ∼ CN (0, I) accounts for the additive noise during the training interval. During the
payload data transmission interval, the BS receives the signal

y =
K∑
k=1

hk

√
pkdsk + n (3.3)

where sk is the zero mean and unit variance Gaussian information symbol from UE k and
n ∼ CN (0, I) represents the noise during the data transmission. The channel estimates are used
for MRC or ZF detection of the payload, which corresponds to multiplying the received signal
y with ĤH , [ĥ1, . . . , ĥK ]H or (ĤHĤ)−1ĤH to detect the symbols s1, . . . , sK . The power
control methodologies presented in this subsection can be applied jointly to each subcarrier in
an OFDM systems. With the channel hardening effect offered by MaMi, channel variations in
different subcarriers can be neglected and the SE in every subcarrier will mainly depend on the
large-scale fading. Therefore the whole spectrum can be allocated to every UE and the same
power control can be applied to all subcarriers. To make a fair comparison with the scheme
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with equal power allocation in which each UE gives the same power to pilot and data, as done
in [47] and most other previous work, we impose the following constraint on the total transmit
energy over a coherence interval:

τpp
k
p + (T − τp)pkd ≤ Ek, k = 1, . . . , K (3.4)

where Ek is the total energy budget for UE k within one coherence interval. Unlike previous
work, we consider the scenario where each UE can choose freely how to allocate its energy
budget on the pilots and payload.

3.1.2 Achievable SE With Linear Detection

Since the exact ergodic capacities of the UE channels with channel uncertainty is unknown,
lower bounds on the achievable SE are often adopted as the performance metric in MaMi. Here
we present lower bounds on the capacity for arbitrary power control.

The capacity of UE k with MRC detection is lower bounded by the achievable ergodic SE

Rk =
(

1− τp
T

)
log2(1 + SINRk) (3.5)

where pilot and payload powers are arbitrary,

SINRk =
Mpkdγk

1 +
∑K

j=1 βjp
j
d

(3.6)

and γk =
τppkpβ

2
k

1+τppkpβk
.

Similarly, the capacity of UE k with ZF detection is lower bounded by the achievable ergodic
SE

Rk =
(

1− τp
T

)
log2(1 + SINRk) (3.7)

where pilot and payload powers are arbitrary,

SINRk =
(M −K)pkdγk

1 +
∑K

j=1 p
j
d(βj − γj)

(3.8)

and γj =
τpp

j
pβ

2
j

1+τpp
j
pβj

. M > K needs to be satisfied for ZF detector to work.

These achievable SEs are the performance metric commonly used in the MaMi literature.
Therefore it is used throughout the paper, where τp, p

k
p and pkd are the variables to be optimized

(for k = 1, . . . , K). The optimization can be done at the BS, which can then inform the UEs
about the pilot length, the amount of power to be spent on pilots, and the amount of power
to be spent on payload data. The aim is to maximize a given utility function U(R1, . . . , RK)
where U(·) can be any function that is monotonically increasing in every argument. The utility
function characterizes the performance and fairness that we provide to the UEs. Examples of
commonly used utility functions are the max-min fairness, sum performance, and proportional
fairness. The general problem we address for both MRC and ZF is:

maximize
τp,{pkp},{pkd}

U (R1, . . . , RK)

subject to τpp
k
p + (T − τp)pkd ≤ Ek, ∀k,

pkp ≥ 0, pkd ≥ 0, ∀k,
K ≤ τp ≤ T.

(3.9)

Two important results can be obtained for this problem, when using MRC or ZF detection:
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• For any monotonically increasing utility function U(R1, . . . , Rk), the energy constraint
(3.4) is satisfied with equality for every UE at the optimal solution, i.e.,

τpp
k
p + (T − τp)pkd = Ek, k = 1, . . . , K.

• For any monotonically increasing utility function U(R1, . . . , Rk), the problem (3.9) has
τp = K at the optimal solution.

Using these properties, we can reduce the number of variables involved in (3.9) and this
enables us to find the optimal solutions for certain utility functions in the following sections.
We also know that the optimal training period τp is equal to the number of UEs being served,
and is the same for every UE. Therefore there is no need for assigning pilot sequences of different
lengths to different UEs.

3.1.3 Maximize Weighted Minimum SE

In this subsection, we solve the power control problem (3.9) for the class of max-min fairness
problem. The max-min fairness problem is selected to provide the same quality-of-service to
all users in the cell. The two cases with MRC and ZF will be discussed separately since the
SINR expressions are different. With max-min fairness we aim at serving every user with equal
weighted SE according to their priorities and make this value as large as possible. We choose
U(R̃1, . . . , R̃K) = mink R̃k with R̃k = (1 − τp

T
) log2(1 + wkSINRk) where wk > 0 are weighting

factors to prioritize different users. Since (1− τp
T

) log2(1+wkSINRk) is monotonically increasing
in wkSINRk, it is equivalent to choose the objective as mink wkSINRk.

Max-Min for MRC

With MRC, the power control problem becomes

maximize
{pkp}, {pkd}

min
k

wkMpkdγk

1 +
∑K

j=1 βjp
j
d

subject to τpp
k
p + (T − τp)pkd ≤ Ek,∀k

pkp ≥ 0, pkd ≥ 0,∀k.

(3.10)

Using the epigraph form of (3.10) we have the following equivalent problem formulation:

maximize
{pkp},{pkd}, λ

λ

subject to wkMpkdτpp
k
pβ

2
k ≥

λ(1 +
K∑
j=1

βjp
j
d + τpp

k
pβk

+ τpp
k
pβk

K∑
j=1

βjp
j
d),∀k

τpp
k
p + (T − τp)pkd ≤ Ek,∀k

pkp ≥ 0, pkd ≥ 0,∀k.

(3.11)
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This problem is non-convex as it is formulated here, however we recognize it as a geometric
program (GP). Such programs can be solved efficiently to global optimality with any general-
purpose GP solver, for example, [3] with CVX [23]. We have also developed an explicit semi-
closed form solution to the problem, which only requires a line search to obtain the global
optimum. The exact details can be found in the MAMMOET publication [11].

Max-Min for ZF

Similar to the case of the MRC detector, we can write the problem as max-min weighted SINR
as follows:

maximize
{pkp}, {pkd}

min
k

wk(M −K)pkdγk

1 +
∑K

j=1 p
j
d(βj − γj)

subject to τpp
k
p + (T − τp)pkd ≤ Ek,∀k

pkp ≥ 0, pkd ≥ 0,∀k.

(3.12)

The only difference from (3.10) is the expressions of the SINRs, which is now taken from
(3.8) by inserting τp = K. Due to the negative terms appearing in the denominator of the SINR
expressions, this problem cannot be directly transformed to a GP problem.

Fortunately, we can prove that Problem (3.12) can be reformulated as

maximize
{pkp}, {pkd}

min
k

wk(M −K)pkdγk

1 +
∑K

j=1 p
j
dβj

subject to τpp
k
p + (T − τp)pkd ≤ Ek,∀k

pkp ≥ 0, pkd ≥ 0,∀k.

(3.13)

This implies that solving problem (3.13) gives the same optimal pkd, p
k
p as solving problem (3.12),

but the objective value is different.
By comparing (3.13) with (3.10), we see that only the difference is that M with MRC is

replaced with M −K with ZF. Therefore the power allocation that solves the weighted max-
min SE for the MRC also solves the weighted max-min SE for the ZF. The same methods and
analytical solutions apply. Practically speaking, this implies that the users do not need to know
what kind of detector is used at the BS. While the BS can switch between different detectors
according to the data traffic requirements or power consumption restrictions.

3.1.4 Joint Pilot and Data Power Control for Weighted Sum SE

In this subsection, we solve the power control problem (3.9) for the weighted sum SE for MRC
and ZF detector. This problem is selected to maximize the total system throughput, and
weights are included to provide some fairness between different users. We define the weighted
sum SE by choosing U(R1, . . . , RK) =

∑K
k=1wkRk.

Power control that maximizes sum SE when interference is present is known to be an NP-hard
problem in general under perfect channel knowledge [37]. In this part we present a polynomial-
time solution to one special case when all sources transmit to the same receiver. When channel
estimation errors are present, with the bounding techniques we used for the achievable SE we
discover a specific structure that lead to a convex reformulation after a series of transformations.
Since optimizing the data power is considered to be a hard problem itself, in the following we
first present the case when one only optimizes the data power, then the solution approach is
extended to the case of joint optimization of pilot and data power.
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Weighted Sum SE for MRC

By utilizing the properties that were presented earlier, (3.9) now becomes the following opti-
mization problem:

maximize
{pkd}, {pkp}

∑
k

wk log2

(
1 +

Mpkdγk

1 +
∑K

j=1 βjp
j
d

)
subject to τpp

k
p + (T − τp)pkd ≤ Ek, ∀k,

pkd ≥ 0, pkp ≥ 0,∀k.

(3.14)

Since γk depends on pkp which is also an optimization variable, the problem is non-convex.
However, in [11], we prove that Problem (3.14) can be reformulated into the following form:

maximize
s, {yk}

∑
k

wk log2 (1 +Myk)

subject to
K∑
j=1

βjq(yj, s) ≤ 1− s,
(3.15)

where

q(yj, s) =
Ejβjs+ (T −K)yj −

√
E2
j β

2
j s

2 − 2(T −K)(Ejβj + 2)yjs+ (T −K)2y2
j

2(T −K)βj
. (3.16)

The two formulations are equivalent in the sense that they have the same optimal objective
values, and the solution to (3.14) can be obtained from solution to (3.15) via pkd = q(yk, s)/s.
Moreover problem (3.15) is jointly convex in s and yk. Since we have a convex reformulation
(3.15) we can use standard convex solvers to find the optimal solutions efficiently, and the
optimal power control parameters can be recovered easily.

Sum SE for ZF

In the case of perfect CSI, maximizing sum SE for ZF is straightforward. This is because the
ZF detector completely removes all the interference from other users and creates K parallel
channels. However in the case of imperfect CSI, the interference is reduced but still remains,
which makes the sum SE problem at least as difficult as with MRC. Fortunately, the techniques
we developed for solving the MRC case can be applied here to solve the problem to global
optimality. The problem is as follows:

maximize
t, {pkd}, {pkp}

∑
k

wk log2

(
1 +

(M −K)pkdγk

1 +
∑K

j=1(βj − γj)pjd

)
subject to τpp

k
p + (T − τp)pkd ≤ Ek,∀k

pkd ≥ 0, pkp ≥ 0,∀k.

(3.17)

Similar to the MRC case, Problem (3.17) can be reformulated into the following form:

maximize
s, {yk}

∑
k

wk log2 (1 + (M −K)yk)

subject to
K∑
j=1

βjq(yj, s)−
K∑
j=1

yj ≤ 1− s,
(3.18)
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where q(yj, s) is given in (3.16) which is the same as in the MRC case. The two formulations
are equivalent in the sense that they have the same optimal objective values, and the solution
to (3.17) can be obtained from solution to (3.18) via pkd = q(yk, s)/s. Moreover problem (3.18)
is jointly convex in s and yk. Hence, it can be solved by general-purpose solvers.

3.1.5 Simulation Results and Discussion

In this subsection, we present simulation results to demonstrate the benefits of our algorithms
and compare the performance with the case of no power control (i.e., full equal power) as well
as the case of power control on the payload power only (and full power pilots). We consider
a scenario with M = 100 antennas, K0 = 10 users, and the length of the coherence interval is
T = 200 (which for example corresponds to a coherence bandwidth of 200 kHz and a coherence
time of 1 ms). The users are assumed to be uniformly and randomly distributed in a cell with
radius R = 1000 m and no user is closer to the BS than 100 m. The path-loss model is chosen as
βk = zk/r

3.76
k where rk is the distance of user k from the BS where zk represents the independent

shadow fading effect. It is chosen to be log-normal distributed with a standard deviation of 8
dB. Due to the long tail behavior of the log-normal distribution there could be some users with
very small βk, therefore in each snapshot the user with the smallest βk is dropped from service.
Therefore the algorithm is run for K = K0 − 1 = 9 users.

The energy budgets Ek = 10−0.5 ×R3.76 × T and Ek = 100.5 ×R3.76 × T give a median SNR
of −5 dB and 5 dB at the cell edge when using equal power allocation. The weights wk are set
to be equal in all the simulations. The algorithms are run for 1000 Monte-Carlo simulations
where in each snapshot the users are dropped randomly in the cell so that the large-scale fading
βk changes.

Max-Min SE Results

We compare 4 schemes:

1. the solution to problem (3.11) (marked as ‘Max-min’ in the figures);

2. equal power allocation pkd = pkp = Ek/T (marked as ‘Equal Power’ in the figures);

3. optimizing only payload power for problem (3.11) by fixing pkp = Ek/T (marked as ‘Max-
min (data)’ in the figures);

4. the scheme that maximizes the sum SE is presented as well for reference (marked as ‘sum’
in the figures).

The same schemes are tested for both MRC and ZF, and low and high SNR scenarios.
In Figure 3.1 (a) and (b) we plot the cumulative distribution function (CDF) of the minimum

SE over different snapshots of user locations for MRC at low and high SNR respectively. We
observe that without any power control in almost all of the cases the user with the lowest SNR
will get less than 0.5 bit/s/Hz in both low and high SNR scenarios. This is not acceptable if
we want to provide decent quality of service to every user being served. With max-min power
control for both pilot and data we resolve this problem by guaranteeing the users an SE of
more than 1 bit/s/Hz with 0.95 probability and 2.75 bit/s/Hz with 0.5 probability. In low
SNR scenarios the joint optimization doubles the 0.95 likely point, from 0.5 to 1 bit/s/Hz,
which proves the need of joint pilot and data power optimization at low SNR. In this case with
data power control the user with the worst channel would have poor channel estimates that
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Figure 3.1: CDF of the minimum SE with M = 100, K0 = 10, T = 200, R = 1000 m for MRC.
Subplots (a) and (b) correspond to low SNR (−5 dB) and high SNR (5 dB) at the cell edge,
respectively.

limits the SE, while with joint power control they borrow power from the data part to enhance
channel estimation and thereby increase the SE. However in the high SNR scenarios the gain
is marginal by the joint optimization, power control over data is enough. This is because the
channel estimates are already good enough for linear detection. The performance of the sum
SE formulation is not surprising as it is not designed for improving the minimum SE. It boosts
the SE of the users with better channels to increase the sum SE, which in turn scarifies the
users with worse channels.

In Figure 3.2 (a) and (b) we plot the CDF of the minimum SE over different snapshots of
user locations for ZF at low and high SNR respectively. We observe that all schemes perform
similarly and the gains from joint power control with respect to only power control over data
are not as large as in the case of MRC. This is because with ZF most interference is removed by
the detector, however in low SNR scenarios joint power control is still necessary as it increases
the 0.95 likely point from 0.5 to 1 bit/s/Hz compared to power control over data only. The
performance of the sum SE formulation is surprisingly good at both low and high SNR and is
even better than the max-min scheme with only data power control. This suggests that with
ZF detector we can go for the sum SE formulation and push up the total system throughput
without sacrificing much of the worse users’ performance.

Sum SE Results

We compare 4 schemes:

1. the scheme that maximizes the sum SE (marked as ‘Sum’ in the figures);

2. equal power allocation pkd = pkp = Ek/T (marked as ‘Equal Power’ in the figures);

3. optimizing the data power only for sum SE by fixing pkp = Ek/T (marked as ‘Sum (data)’
in the figures);

4. the max-min scheme is also presented for reference (marked as ‘max-min’ in the figures).

The same schemes are tested for both MRC and ZF.

MAMMOET D3.3 Page 52 of 101



Hardware-aware signal processing for MaMi systems

0 1 2 3 4 5 6 7 8
10

−2

10
−1

10
0

Minimum Per User SE with ZF (b/s/Hz)

C
D

F

 

 
(a) Low SNR

Equal Power

Max−min (data)

Max−min

Sum

0 1 2 3 4 5 6 7 8
10

−2

10
−1

10
0

Minimum Per User SE with ZF (b/s/Hz)

C
D

F

 

 
(b) High SNR

Figure 3.2: CDF of the minimum SE with M = 100, K0 = 10, T = 200, R = 1000 m for ZF.
Subplots (a) and (b) correspond to low SNR (−5 dB) and high SNR (5 dB) at the cell edge,
respectively.
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Figure 3.3: CDF of the sum SE with M = 100, K0 = 10, T = 200, R = 1000 m for MRC.
Subplots (a) and (b) correspond to low SNR (−5 dB) and high SNR (5 dB) at the cell edge,
respectively.

In Figure 3.3 (a) and (b) we plot the CDF of the sum SE for the scenario we described above
for MRC at low and high SNR respectively. We observe the optimized power control increases
the sum SE significantly. The whole CDF is shifted to the right by almost 15 bit/s/Hz in the
low SNR scenario with the proposed power control as compared to equal power allocation. At
low SNR the joint power control offers about 10% increase over the case with only data power
control. At high SNR the gain is marginal as the SEs of the users have saturated so we are in
the log part of the SE already. The max-min scheme performs well at high SNR due to the
saturation of SE, but worse at low SNR. This is because enforcing max-min fairness lead to
large sacrifices in sum SE at low SNR. The reason is that with high probability there will be
some very disadvantaged user, and everyone else has to cut back significantly to avoid causing
near-far interference.
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Figure 3.4: CDF of the sum SE with M = 100, K0 = 10, T = 200, R = 1000 m for ZF. Subplots
(a) and (b) correspond to low SNR (−5 dB) and high SNR (5 dB) at the cell edge, respectively.

In Figure 3.4 (a) and (b) we plot the CDF of the sum SE for ZF at low and high SNR
respectively. We observe that with ZF when we optimize only the data power the optimal
scheme is always using full power. The reason for this is that in single cell systems ZF removes
most of the interference, the near-far effects are almost removed by the ZF detector thus creating
almost parallel channels. Therefore the scheme with equal power allocation is the same as
optimizing data power only. The joint power control offers about 10% improvements over the
case with only data power control at low SNR and the gain diminishes as the SNR increases.
However there will always be a gap between the two schemes, this is because even when the
SNR tends to infinity we can always save power on the pilot and use it for data to increase the
SE. The max-min scheme performs poorly in both scenarios, this confirms our suggestion that
with ZF we should use the sum SE formulation.

Robustness

In this subsection, we present simulation results for the case when the large scale fading pa-
rameters are not known perfectly, but obtained through estimation. We assume that the BS
collects N processed pilots from each user to perform this estimation. Specifically, denoting
each channel realization by hik, the processed pilot signals received by the BS for each user can
be written as

yik =
√
τppkh

i
k +wi

k, i = 1, . . . , N, (3.19)

where yik is the processed received signal, τp is the length of the pilot, pk is the signal power
and wi

k is additive noise with variance 1. Then we estimate βk as follows:

β̂k =

∑N
i=1 ||yik||2 −MN

MNτppk
. (3.20)

This estimate is justified by the fact that

||yik||2 ≈ τppk||hik||2 + ||wi
k||2

≈ τppkβkM +M.
(3.21)

Figure 3.5 shows the minimum SE achieved by our max-min scheme with the proposed
estimator of the large-scale fading parameters. The number of observations is N = 10 and the
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Figure 3.5: Average minimum SE with M = 100, K0 = 10, T = 200, N = 10, R = 1000 m for
estimated large scale fading parameters.

median SNR at the cell edge ranges from −10 dB to 10 dB; all other simulation parameters
are the same as in the previous subsection. The estimated βs are treated as the true βs in the
optimization (marked as ‘Estimated’). The performance is compared with the case when the
βs are known perfectly (marked as ‘Genie Aided’). We observe that with the simple, above
suboptimal estimator and the small number of training symbols, the performance degradation is
almost negligible. We conclude that our scheme shows significant robustness against estimation
errors in the large-scale fading parameters.

3.1.6 Conclusion

We considered the optimal joint pilot and data power allocation problems in single cell uplink
MaMi systems with MRC or ZF detection. It was first proved that the optimal length of the
training interval equals the number of users. Using the SE as performance metric and setting a
total energy budget, the power control was formulated as optimization problems for two different
objective functions: the weighted minimum SE and the weighted sum SE. The optimal power
control policy was found for the case of maximizing the weighted minimum SE. The optimal
power control parameters were shown to be the same for MRC and ZF. For maximizing the sum
SE a convex reformulation was found and efficient solution algorithms were developed. In [11],
we show that these methods can also been extended to handle the case of correlated fading,
although a complete treatment of all aspects of that case is left for future work.

Simulation results demonstrated the advantage of joint optimization over both pilot and
data power, and how the two objectives behave at low and high cell-edge SNRs. With MRC we
have a clear choice to make between max-min and sum SE, which is dependent on the system
requirements. With ZF we can maximize sum SE without sacrificing much in min SE. The need
of joint pilot and data power control is particularly important at low SNR, while at high SNR
optimizing only data power seems to be good enough. Since multi-cell systems are interference-
limited, we predict that we will get results similar to the low SNR results, particularly if a large
pilot reuse factor is used to get single-cell-like estimation quality. The numerical results were
also justified by a theoretical analysis in the low and high SNR regime. This analysis showed
that the gain is more substantial when the number of users, K, is small compared to the length
of the coherence interval, T .
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3.2 Downlink Power Control and Link Adaptation:

Throughput-Fairness Trade-Offs

This section deals with power control in downlink single-cell MaMi systems, under practical link
adaptation. In a traditional macro-cell some UEs are close to the BS while others are located
at the cell-edge, suffering from larger path loss and different large scale fading conditions.
Consequently, UEs are subject to different SNRs which in traditional macro-cellular network
lead to uneven throughput allocation between inner-cell UEs and cell-edge UEs. To guarantee
the highest possible throughput for each UE, link adaptation can be implemented. In LTE, for
example, an adaptive modulation and coding scheme (AMC) is adopted [18]. UEs estimate the
channel SNR and feed back the corresponding channel quality index (CQI). The BS selects the
most efficient modulation and coding scheme, based on the acquired CQI, in order to maximize
throughput while reducing retransmissions.

Although link adaptation maximizes the total throughput of the network under predeter-
mined power levels, it does not provide a uniform service to all the UEs. Schedulers, used to
allocate frequency resources to the UE, can improve the fairness of a system. However, optimiz-
ing schedulers results in a trade-off between network throughput and user fairness [12]. In LTE
proper resource allocation over different subcarriers is fundamental in order to take into ac-
count small scale fading and distribute frequency resources over users. In contrast, the channel
hardening effect in MaMi systems makes the role of the scheduler less crucial because when all
the UEs experience a similar, averaged, channel, it is expected that fairness and homogeneity
among users is improved without having to consider the frequency dimension. Moreover, the
whole spectrum can be simultaneously allocated to all UEs.

Several papers have shown that MaMi can deliver uniformly high throughput to all its users
regardless of their positions in the coverage area using proper power control [8,33,60]. However,
these papers do not show whether MaMi, similarly to traditional networks, is facing a trade-off
between throughput and fairness or can really provide UE fairness at no cost on total network
throughput. This trade-off is investigated in this section by comparing several power allocation
algorithms. By relying on the channel hardening property of MaMi to compensate for small-
scale fading, only slowly-varying large-scale power control is used. Simulations are conducted
in both limited and heavy large scale fading scenarios.

3.2.1 System Model

Let us consider the downlink of a multiuser OFDM MaMi system. The BS is equipped with
M antennas and serves simultaneously K single antenna users. The received downlink signal
yf ∈ CK×1 is modeled as

yf = αL1/2HfWfP
1/2sf + zf , (3.22)

where the index f represents the subcarrier. L1/2 is a diagonal matrix with entries 0 ≤√
l(1),
√
l(2), . . . ,

√
l(K) ≤ 1 which represent the inverse path loss (the channel gain) relative

to each UE, whose values change very slowly over time. To fairly assess different MaMi scenar-
ios, we ensure that E

[
||αL1/2||2

]
= K introducing the constant α =

√
K/tr(L). The channel

between the BS and the UEs is H ∈ CK×M . H is modeled as CN (0, I) and it is normalized
such that E [||H||2F ] = KM . The system is based on time-domain duplexing, including an
uplink pilot phase in order to let the BS estimate the channel. Based on this knowledge, the
precoder W = [w(1)|w(2)| · · · |w(k)], where w(k) is the M -dimensional beamforming vector, and
the diagonal power allocation matrix P ∈ RK×K are computed. W and P are designed under
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power constraints. We assume tr
(
WHW

)
≤ K and tr(P) ≤ K. W is designed as a Zero Forc-

ing (ZF) precoding which is the pseudo-inverse of H [48]. s ∈ CK×1 are the actual stochastic
zero-mean data symbols and we further assume E[||s||2] = 1. The additive term zf ∈ CK×1 is
the independent receiver noise generated with distribution CN (0, σ2

zI).
In the following, we omit the frequency index without loss of generality since in MaMi channel

variations are negligible over the frequency domain [8]. The k-th UE receives the symbol

y(k) = α
√
l(k)h(k)Hw(k)

√
p(k)s(k) + α

∑
j 6=k

√
l(k)h(k)Hw(j)

√
p(j)s(j) + z, (3.23)

where the first term represents the desired received precoded symbol at the user k and the
second term represents the interfering symbols sent to the others UEs in the system. The
ergodic SINR γ(k) of the k-th UE is then given by

γ(k) =
α2l(k)p(k)E

[
|h(k)Hw(k)|2

]
α2E

[∑
j 6=k l

(k)p(j)|h(k)Hw(j)|2
]

+ σ2
z

, (3.24)

which reduce when perfect channel estimation is considered when computing ZF, such that

h(k)Hw(j) = 0, to the following effective SNR:

γ(k) =
α2l(k)p(k)E

[
|h(k)Hw(k)|2

]
σ2
z

. (3.25)

Based on γ(k) estimation, link adaptation can be used at the BS to select the proper modu-
lation and coding scheme (MCS) and power allocation.

3.2.2 Link Adaptation Procedure

In contrast to the ideal link adaptation assumed in the ergodic rate analysis, carried out in the
vast majority of literature on MaMi, we consider practical link adaptation. It makes sure each
UE gets the best possible throughput by power and MCS allocation while respecting overall
power and possibly fairness constraints. The maximization problem can be stated as:

maximize
p(k)

C(γ(k))

subject to tr
(
WHW

)
≤ K,

tr(P) ≤ K,

CWER ≤ ν.

(3.26)

The maximization of the network throughput C is constrained by the total output power
and by the desired quality of service (QoS) which is here quantified as codeword error rate
(CWER).

Based on the allocated power, the BS estimates the received SNR for each UE. The pre-
dicted SNR is used in the link adaptation procedure to choose the MCS which maximizes the
throughput of each UE. In practice this is done by selecting the highest MCS which satisfies
the CWER requirement. Figure 3.6 shows the CWER as function of SNR, for each transmis-
sion mode in a single UE MaMi setting, assuming M = 100 antennas. A Rayleigh multi-path
channel is assumed. Thanks to the channel hardening effect the small scale fading is averaged
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Figure 3.6: CWER as function of received SNR for the different MCS listed in Table 3.1.

out and the same threshold would be obtained in a single antenna AWGN channel given that
the MaMi array gain is not included here (the actual SNR can be 20 dB lower than those values
with 100 antennas). From Figure 3.6 we can extract the SNR threshold for error-free operation
for each MCS. Values are reported on Table 3.1 which shows the modulation order and code
rate used, the achieved spectral efficiency and the SNR threshold SNR for each MCS index.

3.2.3 Downlink Power Allocation Schemes

The total transmission power is shared among the UEs based on the selected power allocation
scheme (PAS). Thanks to the channel hardening effect, the design of the power allocation matrix
P is based only on the large-scale fading characteristics. Moreover, the same power control is
applied over the whole spectrum. Depending on the design of the power allocation matrix P,
different performance can be achieved in terms of throughput and fairness but the trade-off
is not straightforward. Cell-edge and shadowed UEs are the bottleneck of a communication
system as they do not contribute enough to the total throughput of the system. Hence, the
most intuitive procedure to optimize the total throughput of the network would be to sacrifice
fairness by not equalizing the SNRs over all UEs, but rather dropping the weaker UEs while
allocating more power to the best UEs. However, with simple power control, MaMi can ensure
the same throughput experience to all the UEs in a cell, given that small-scale fading is removed
in MaMi. To study the trade-off between fairness and sum throughput, the different PAS
described hereunder are compared.

Inverse Power Allocation

The inverse power allocation strategy aims to compensate the path loss and large scale fading
and to guarantee equal received SNR, thus equal quality of service (QoS) to all the UEs present
in the cell. UEs located in the cell-edge will observe the main benefit of this technique as more
power is allocated to the weaker UEs and less power to the most favorable UEs such that the
received SNRs of all the links are equivalent. The power allocation matrix can be expressed as

P = ηL−1, (3.27)
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Table 3.1: Modulation and coding rate mapping.

MCS Modulation Code Rate Spectral eff. SNRth

1 BPSK 1/2 0.5 0
2 BPSK 2/3 0.66 1.5
3 BPSK 3/4 0.75 2
4 QPSK 1/2 1 2.5
5 QPSK 2/3 1.33 4.5
6 QPSK 3/4 1.50 5.5
7 QPSK 5/6 1.67 6.5
8 16-QAM 1/2 2 8.5
9 16-QAM 2/3 2.67 10.5
10 16-QAM 3/4 3 11.5
12 16-QAM 5/6 3.33 13
13 64-QAM 2/3 4 15.5
14 64-QAM 3/4 4.5 17
15 64-QAM 5/6 5 18

where η =
K

tr(L−1)
is the normalization factor to ensure the total power constraint.

Max-Min Power Allocation

The max-min power allocation has the objective to maximize the minimum achieved rate for
each user. Instead of maximizing the total throughput of the system as in (3.26), the max-min
algorithm maximizes the throughput of the weakest link to improve fairness:

maximize
p(k)

min(γ(1), . . . , γ(k))

subject to tr
(
WHW

)
≤ K,

tr (P) ≤ K,

CWER ≤ ν.

When the available power is not sufficient to satisfy the minimum requirement for each UE,
namely MCS 1, only the strongest UEs are allocated, while one or more UEs with the weakest
channels are sacrificed. Max-min and inverse PAS share the objective to equalize the received
SNR. When the lower MCS can be guaranteed to each UE, the max-min algorithm converges
to the same power allocation in equation (3.27).

Waterfilling

The waterfilling solution has been proven to be the optimal solution to maximize the network
throughput by allocating more power on the most favorable channels [61]. The original water-
filling solution was derived with the underlying assumption that each spatial stream can support
any possible rate which is not true in practical communication system where, usually, a finite
set of MCS are available as in Table 3.1. The power allocated to the k-th UE is:

p(k) =

µ−(α2l(k)E
[
|h(k)|2

]
σ2
z

)−1
+

, (3.28)
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where µ is the water level chosen to satisfy the power constraint and (x)+ , max(0, x) denotes
the positive part of x. The water-filling solution proposed here slightly differs to the traditional
solution which is based on singular value decomposition (SVD) of the channel. It allows a
simpler algorithm which does not rely on full channel knowledge as in the SVD case but only
on the knowledge of the SNR based on the gain of each UE channel, which in MaMi is not
affected by small scale fading.

Equal Power Allocation

The available power is equally distributed between the UEs, independently on the channel
conditions. The power allocation matrix is simply

P = I, (3.29)

which is the least complex PAS. However, it has been shown to be a suboptimal solution for
network throughput optimization in conventional systems [61].

3.2.4 Fairness and Throughput Analysis

In this section, the impact of the different PAS on throughput and fairness in a MaMi system
is analyzed using system level simulations. To evaluate the sum rate of the system we define
the throughput of the k-th UE as

T (k) = (1− CWER(k))N
(k)
b r

(k)
b , (3.30)

where CWER is the codeword error rate, Nb is the modulation order and rb is the coding rate.
To evaluate the fairness of the system we use Jain’s fairness index:

F =

(∑K
k=1 T

(k)
)2

K
∑K

k=1(T (k))2
, (3.31)

which measures the similarity of the achieved throughput over different UEs. When all UEs get
the same throughput then the fairness index is 1 which means that the system is 100% fair [26].

Based on LTE we consider a 20 MHz OFDM system with 2048 subcarriers out of which
1200 are actively allocated, the others serving as guard band. The system uses state-of-the-art
LDPC coding, derived from the channel coding of the IEEE 802.11ac standard, with codeword
length assumed to be 1944 bits. The channel H is a time-domain Rayleigh with 20 taps of
equal expected energy, uncorrelated over both UE and antenna dimensions. This channel is
attenuated by user coefficients lk, describing the large scale fading for each user k. The large
scale fading is assumed to be log-normal distributed with 10log10(lk) ∼ N (0, σls). Results are
averaged for 50 channel realizations.

The attenuation due to the large scale fading in a practical scenario strongly depends on
the environment and it can assume different values. We evaluate the system behavior in both
medium and heavy large scale fading scenarios, represented as σls = 5 or 10 dB, respectively.

Medium Large Scale Fading Scenario

Results demonstrate that in MaMi systems, even though small-scale fading is averaged through
channel hardening which eases power allocation and scheduling, fairness is still achieved at
the price of throughput reduction, as it is the case for other systems. Figure 3.7 shows Jain’s
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Figure 3.7: Fairness on the left y axis and sum rate on the right y axis in MaMi with M = 100,
K = 10, σls = 5, for different power allocation strategies.

fairness index and total throughput of a MaMi system with M = 100 antennas, serving K = 10
UEs, for each of the power allocation schemes discussed in Section 3.2.2, assuming σls = 5.
The SNR normalization does not include the benefit coming from a 10log10(M) = 20 dB MaMi
array gain. Waterfilling sets the throughput upper bound, while inverse PAS guarantees full
fairness.

At low SNR, inverse power allocation is not able to guarantee the minimum MCS to all the
UEs and hence it does not deliver any throughput. On the contrary, the three other algorithms
deliver a similar positive throughput but different fairness levels are achieved. Max-min clearly
outperforms the other PAS in terms of fairness. For low SNR fairness maximization can be
the best strategy as it only creates a negligible throughput reduction. For example at SNR =
−15 dB max-min provides 90% fairness while waterfilling reduces the fairness to 53%. Even
though Jain’s index provides some insight into the overall system fairness, it does not help in
identifying detailed differences between UEs.

In order to get more insight into individual UEs, Figure 3.8 illustrates the throughput analysis
for each UE at a very low SNR = −15 dB. In the figure, the UEs are sorted in decreasing
order based on the received power, that is, UE 1 experiences the best channel condition while
UE 10 is subject to the largest fading. It is evident that when enforcing fairness, more UEs are
multiplexed and given a similar QoS but the throughput of the most favorable UEs dramatically
decreases. The throughput of UE 1 drops from 3 bit/s/Hz using waterfilling to 0.5 bit/s/Hz
using inverse PAS, but all the UEs can be served instead of only 7 out of 10. Max-min prefers
to sacrifice UE 10 ensuring fairness to the other 9 UEs and providing up to 0.66 bit/s/Hz.
Enforcing fairness with max-min PAS also enables UE 6 and UE 7 to experience a slightly
improved throughput as compared to waterfilling and equal PAS.

Focusing on intermediate SNRs, waterfilling and equal PAS have similar performance while
max-min converges to the inverse PAS. At SNR=0 dB the difference in system fairness decreases.
Waterfilling and equal PAS provide indeed fairness higher than 90% while improving the sum
rate by some 5 to 7 bit/s/Hz with respect to inverse and max-min PAS. This suggests that
throughput or fairness maximization is possible while facing a limited reduction of the other
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Figure 3.8: Average throughput [bit/s/Hz] achieved for each UE at SNR = −15 dB when σls = 5
for the different PAS.

dimension. Figure 3.9 shows the detailed analysis for each UE confirming that both optimization
are feasible and high throughput is guaranteed in both cases. At higher SNRs such as 10 dB
the system is saturated and all the schemes assign the highest MCS to all the UEs.

Heavy Large Scale Fading Scenario

Assuming a log-normal variance of σls = 10 dB, which is more representative of what can be
observed in a real cell, Figure 3.10 shows the sum rate and fairness of the system. Compared to
Figure 3.7, the higher attenuation introduced in the system causes a throughput degradation
as well as a lower fairness for all the PAS. As we increase the large scale variance, the gap in
throughput for low SNR between max-min and equal PAS becomes more evident. Also the
throughput losses of max-min and inverse PAS compared to waterfilling and max-min PAS
become larger.

For low SNR, both optimization directions are possible. Max-Min has to sacrifice nearly
50% of the throughput with respect waterfilling in order to increase the fairnes from 35% to
70%. Figure 3.11 shows the details for each UE at SNR= -15dB. Inverse PAS is not able to
deliver any throughput at that SNR. Max-min can serve 7 UEs instead of 5 selected by equal
PAS and waterfilling.

For higher SNR fairness maximization is not the best strategy as the system is subject to
a huge throughput loss. For example at SNR=0 dB, max-min and inverse PAS lose nearly
14 bit/s/Hz as compared to waterfilling and equal PAS in order provide full fairness. Figure
3.12 confirms that the losses are too heavy and optimizing for fairness 8 out of the 10 UEs are
subject to a throughput reduction.
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Figure 3.9: Average throughput [bit/s/Hz] achieved for each UE at SNR = 0 dB when σls = 5
for the different PAS.
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Figure 3.10: Fairness and sum rate in 100x10 MaMi system when σls = 10 for different power
allocation strategies.
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Figure 3.11: Average throughput [bit/s/Hz] achieved for each UE at SNR = −15 dB when
σls = 10 for the different PAS.
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Figure 3.12: Average throughput for each UE at SNR = 0 dB when σls = 10.
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Figure 3.13: Relative throughput losses in percentage required to improve system fairness
in LTE and MaMi when σls = 5. Losses are calculated with respect to BCQI in LTE and
waetrfilling in MaMi.

Comparison with Traditional Networks

Similarly to traditional networks, MaMi systems are facing the trade-off between throughput
and fairness. Let us study the throughput losses of the system and propose a comparison with
an LTE cellular network. The comparison is not straightforward as MaMi and LTE operate
in a different way. While MaMi eliminates frequency-domain variations, LTE uses schedulers
to allocate the UEs over different frequency resources. The scheduler employed determines the
fairness of the system. However, it is important to understand whether MaMi, beyond its well
known benefits, also simplifies the trade-off between fairness and throughput.

The reference LTE system uses different schedulers. Best CQI (BCQI) aims at throughput
optimization. Proportional Fairness aims at fairness optimization and Round Robin assigns the
resources to the UEs in a circular fashion without specific throughput and fairness optimization.
The reader is refered to [12] and references therein for a more detailed description of the LTE
system and schedulers.

Figure 3.13 shows, for σls = 5, the relative throughput losses required to improve the system
fairness in LTE and in MaMi with respect to the maximum throughput achieved by each of the
two systems. The maximum throughput is provided by the BCQI scheduler and waterfilling PAS
respectively in LTE and MaMi. We observe that MaMi has to sacrifice a smaller throughput
fraction, independently on the SNR, to maximize the fairness. For example, MaMi is subject to
50% of throughput reduction while LTE has to sacrifice 70% of throughput, when SNR=-15 dB
to obtain the best fairness. Moreover, only MaMi is able to provide 100% fairness.

Figure 3.14 shows the heavy fading scenario σls = 10. For higher large scale fading variance
MaMi experiences the same benefit as compared to LTE. However, as already pointed out, even
MaMi experiences huge losses to improve fairness and more than 50% of throughput reduction
is required independently on the SNR, when targeting maximum fairness.
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Figure 3.14: Relative throughput losses required to improve system fairness in LTE and MaMi
when σls = 10.

3.2.5 Conclusion

This section has investigated the relation between throughput and fairness in MaMi systems
when performing long term power control in the downlink, based on large scale fading modeled
with a log-normal distribution. Four different power allocation schemes were considered. Two
of them, namely inverse power allocation and max-min power allocation, share the objective
of fairness maximization. Waterfilling and equal power allocation, on the other hand, aim at
maximizing the throughput of the network. Simulations show that, as in traditional networks,
the trade-off between fairness and high throughput is still critical in MaMi. System fairness is
only achieved at the price of a throughput reduction. For low log-normal variance, simulations
suggest that it would be possible to optimize fairness or throughput with minimal impact on
the performance of the other dimension. Both optimization can be used depending on the QoS
network operator would like to provide. For large log-normal channel fading variations, the
throughput cost of enforcing fairness is very large. More than 50% of throughput reduction is
observed independently on the SNR.

3.3 Out-of-Band Radiation from MaMi Transmissions

MaMi must be designed with low-cost components, to limit the implementation cost and power
consumption when having many RF chains. However, these low-cost components are suffering
from imperfections and non-idealities introducing distortion in the transmitted signal. Out-of-
band (OOB) radiation is the undesired power of a signal at frequencies outside the allocated
frequency band. Such power usually arises from nonlinear circuits and can potentially disturb
concurrent transmission in adjacent bands. Therefore, many standards, e.g., LTE [1], limit the
amount of out-of-band radiation that is allowed to be emitted. Based on the LTE specifications,
OOB radiation should not exceed −13 dBm/MHz [2].

Traditionally, OOB radiation has been measured on a per-antenna basis. MaMi uses channel-
based MIMO precoding to make the signals add constructively at the intended UE. While in-
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band interferences do not recombine constructively [44], and completely saturated PAs only
lead 1.5 dB degradation in terms of BER at the intended UEs [14], it is however not clear what
the impact of precoding is on the OOB interference at the UE, or more importantly, at any
possible location. In a MIMO setting, where many antennas transmit together, measuring the
OOB on a per-antenna basis is not necessarily a sensible approach. The radiated power from
the transmitting antennas builds up constructively or destructively in the air and the amount
of OOB radiation that disturbs transmission in adjacent bands can thus be greater or smaller
than what was emitted from any single antenna. Not to disturb other communication, the OOB
radiation should therefore instead be limited on the basis of what is actually received by the
UEs of adjacent bands.

The phenomenon of OOB radiation in single-antenna systems has been thoroughly studied
before, see for example [21]. Methods developed to mitigate OOB radiation, such as digital
pre-distortion, are also well known [30]. Many of these methods are, however, impractical
in a MaMi system due to the great number of radio chains. In this section, we study the
spatial distribution of the OOB radiation in order to gain some fundamental insight into its
behavior in multi-antenna systems with nonlinear amplifiers, and to understand how it should be
appropriately measured. This will be an important aid for the standardization process of future
communication systems. Further details are available in the MAMMOET publication [43].

We show that, in MaMi, OOB does not recombine constructively, in several different scenar-
ios, even using fully saturated PAs. We first give a description of the received power spectrum
density (PSD) with the aim to verify whether coherent combination of the signal outside the
band of interest occurs. Then we verify our analysis using numerical simulations. In particular,
we quantify the interference received by a random UE operating in an adjacent band, exploiting
the new concept of MIMO Adjacent Channel Leakage Ratio (ACLR).

3.3.1 System Model

The BS transmits the digital signals x[n] , (x1[n], . . . , xM [n])T on its M antennas by pulse-
amplitude modulating them with the pulse p(τ) into the analog signal

x(t) ,

 x1(t)
...

xM(t)

 =
∑
n

x[n]p(t− nT + Ψ), (3.32)

where T is the symbol duration and Ψ is a random variable1 that is uniformly distributed
on the interval 0 ≤ Ψ < T . The bandwidth of the pulse p(τ) is assumed to be equal to the
bandwidth B that is allocated to the BS. The signal x(t) is amplified to transmit power into
y(t) , (y1(t), . . . , yM(t))T, where the amplification is modeled as

ym(t) =
P∑
p=1

∞∫
−∞

bmp(t− τ)xm(τ)|xm(τ)|2(p−1)dτ, (3.33)

where bmp(τ) is the impulse response of the nonlinear p-th order term of the m-th amplifier [30].
Note that this polynomial model is a special case of the more general Volterra series [53]: all
kernels outside the diagonal are set to zero and all dynamic memory is removed. Nonlinear
memory effects are typically much weaker (in the order 20 dB) than the direct nonlinearities.

1The introduction of Ψ is a way to make pulse-amplitude modulation preserve stationarity [49]; it only
appears in this equation.
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Their effect is therefore secondary. Further, note that any physical nonlinearity can be approx-
imated by a polynomial—the nonlinearity in (3.33) could therefore also model other hardware
architectures.

The received signal rθ(t) at a spatial point θ is given by

rθ(t) =
√
βθ

∞∫
−∞

hT

θ (τ)y(t− τ)dτ, (3.34)

where hθ(τ) is the impulse response of the small-scale fading from the array to the point θ and
βθ ∈ R+ a large-scale fading coefficient, which models signal attenuation due to both distance
and shadowing.

3.3.2 BS Radiation Pattern

We assume that the BS is serving K single-antenna UEs and that the M transmit signals are
produced by linear precoding as

x[n] =
∑
`

W[`]D
1/2
ξ s[n− `], (3.35)

where s[n] , (s1[n], . . . , sK [n])T, sk[n] is the symbol to be transmitted to UE k at symbol time
n, Dξ , diag(ξ) is a diagonal matrix with the relative power allocations ξ , (ξ1, . . . , ξK)T, for

which ξk ∈ R+ and
∑K

k=1 ξk = 1, on its diagonal and {W[`]} is the impulse response of the
precoder.

The discrete-time channel is given by

H[`] ,
(
p(τ) ?H(τ) ? p∗(−τ)

)
(`T ), (3.36)

where H(τ) , (hθ1(τ), . . . ,hθK (τ))T and θk is the location of UE k. The simplest linear precoder
is the MR precoder, whose impulse response is given by W[`] = αHH[−`], where α is a real-
valued normalization factor that is chosen such that

∑
` ‖W[`]‖2

F = K. Another common
precoder is zero-forcing, which we use in this section; see e.g. [9,45] for an exact definition. We
assume that the BS knows H[`] perfectly.

Further, we assume that s[n] is a circularly symmetric i.i.d. stationary process, for which

Rss[ν] =

{
IK , if ν = 0,

0K , otherwise.
(3.37)

Because of the multiuser precoding in (3.35) and of the central limit theorem, the distribution
of the discrete-time transmit signals x[n] is close to circularly symmetric complex Gaussian.
Note that this is true independently of whether OFDM or single-carrier transmission is used
and independently of the order of the symbol constellation [45]. The autocorrelation function
of the unamplified transmit signals x[n] in a given coherence interval (the expectation is taken
with respect to the symbols and is conditioned on the small-scale fading) is

Rxx[ν] = E

[(∑
`

W∗[`]D
1/2
ξ s∗[n−`]

)(∑
`′

sT[n+ν−`′]D1/2
ξ WT[`′]

) ∣∣∣∣∣ {H[`]}

]
(3.38)

=
∑
`

W∗[`]DξW
T[ν+`]. (3.39)
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For example, if maximum-ratio precoding is done, Rxx[ν] = α2
∑

` H
T[`]DξH

∗[` − ν]. The
pulse-amplitude modulated x(t) thus has the autocorrelation function

Rxx(τ) =
1

T

∞∑
ν=−∞

Rxx[ν]
(
p(t) ? p∗(−t)

)
(τ − νT ). (3.40)

The cross-correlation of the transmit signal is thus

Rymym′ (τ) = E
[ P∑
p=1

∞∫
−∞

b∗mp(t− λ)x∗m(λ)|xm(λ)|2(p−1)dλ

P∑
p′=1

∞∫
−∞

bm′p′(t+ τ − λ′)xm′(λ′)|xm′(λ′)|2(p′−1)dλ′
]

(3.41)

=
P∑
p=1

P∑
p′=1

∞∫
−∞

∞∫
−∞

b∗mp(t− λ)bm′p′(t+ τ − λ′)

E
[
x∗m(λ)xm′(λ′)|xm(λ)|2(p−1)|xm′(λ′)|2(p′−1)

]
︸ ︷︷ ︸

,ξ(p,p
′)

mm′ (λ,λ′)

dλdλ′. (3.42)

In the last step, the variable t just translates the integrand. The integral thus does not depend
on t and the transmit signals are therefore weak-sense stationary. Because odd moments of

Gaussian random variables are zero, we see that ξ
(p,p′)
mm′ (λ, λ′) is zero for m 6= m′, for all p, p′,

λ, λ′, if the unamplified signals xm(t) are uncorrelated across the antennas. This means that,
when Rxx(τ) is diagonal, Ryy(τ) is diagonal too.

Using the moment theorem for Gaussian random variables [51], ξ
(p,p′)
mm′ (λ, λ′) can be computed

for any m,m′, p, p′, e.g.,

ξ
(1,1)
mm′(λ, λ

′) = Rxmxm′ (λ
′ − λ) (3.43)

ξ
(1,2)
mm′(λ, λ

′) = 2σ2
xmRxmxm′ (λ

′ − λ) (3.44)

ξ
(2,2)
mm′(λ, λ

′)=2Rxmxm′(λ
′−λ)

(
2σ2

xmσ
2
xm′+

∣∣Rxmxm′(λ
′−λ)

∣∣2), (3.45)

where σ2
xm , Rxmxm(0). Furthermore, we note that

ξ
(p,p′)
mm′ (λ, λ′) = ξ

(p′,p)
m′m

∗
(λ′, λ). (3.46)

To study the radiation pattern of the array at different frequencies, we define the frequency
response of the channel to the point θ as

h̃θ(f) ,

∞∫
−∞

hθ(τ)e−j2πτfdτ. (3.47)

Let Ryy(τ) be the matrix, whose (m,m′)-th element is Rymym′ (τ). The radiation pattern is
given by the power spectral density (PSD)

Syy(f) ,

∞∫
−∞

Ryy(τ)e−j2πτfdτ (3.48)
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and the power received at the point θ at frequency f by

Sθ(f) , βθh̃
H

θ (f)Syy(f)h̃θ(f). (3.49)

The power radiated by the BS at frequency f is

Stx(f) , tr(Syy(f)). (3.50)

Note that the average received power at a point, where h̃θ(f) is independent of Syy(f) and the

fading coefficients are zero-mean and uncorrelated E
[
h̃θ(f)h̃H

θ (f)
]

= IM , is

E[Sθ(f) ] = βθ E[Stx(f) ] . (3.51)

The expectation is over all small-scale fading, also over the channels to the UEs, of which the
precoding is a function.

3.3.3 Measures of Out-of-Band Radiation

To constrain the amount of OOB radiation of a BS, it is important to be able to easily measure
it at the BS. In this subsection, we study the measure conventionally used in single-antenna
systems and generalize it to multi-antenna systems. We also propose a framework to analyze
how the transmitted signal is beamformed at different frequencies—in-band and out-of-band.

Traditional Single-Antenna Setting

Traditionally, the transmitted OOB radiation has been measured at the antenna port in terms
of the Adjacent-Channel Leakage Ratio (ACLR). Let Syy(f) be the PSD of the transmit signal
in a single-antenna BS. Then the ACLR is defined as [1, 54]:

ACLR ,
max

{∫ −B/2
−3B/2

Syy(f)df,
∫ 3B/2

B/2
Syy(f)df

}∫ B/2
−B/2 Syy(f)df

. (3.52)

This measure compares the amount of power that has leaked over to an immediately adjacent
band, which is assumed to have the same width B as the allocated band, to the power in the
allocated band. The first term in the numerator of (3.52) is the power in the band just to the
left of the allocated band and the second term that in the band to the right. The maximum of
the two sideband powers is taken since nonlinear memory effects might create an asymmetric
spectrum around the carrier frequency.

We let h̃θ(f) = h̃θ(f) be the frequency response from the single-antenna BS to the point
θ. If the antenna gain is constant over the frequency band [−3B/2, 3B/2], then ACLR can
equivalently be measured in a fading environment over the air too as

ACLR =
max{

∫ −B/2
−3B/2 E[Sθ(f) ] df,

∫ 3B/2

B/2 E[Sθ(f) ] df}∫ B/2
−B/2 E[Sθ(f) ] df

, (3.53)

where averaging is done over the small-scale fading. Note that, because of the averaging, this
ratio is the same at every location θ and is equal to ACLR in (3.52). A fading environment
can be artificially created in a reverberation chamber, which would lend itself to practical
measurements of this kind [24].
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Multi-Antenna Setting

The most straightforward way to generalize the ACLR measure to a multi-antenna setting is
to define a per-antenna ACLR as

ACLRm ,
max

{∫ −B/2
−3B/2 E[Symym(f) ] df,

∫ 3B/2

B/2 E[Symym(f) ] df
}∫ B/2

−B/2 E[Symym(f) ] df
. (3.54)

Since signals from a multi-antenna BS combine in the air however, there is a chance that the
received power in an adjacent band is larger than it would be with a single-antenna BS using
the same total transmitted power. Therefore it remains to determine what the per-antenna
ACLR says about how much a victim, who operates in an adjacent band, really is disturbed.

Based on the observation in (3.53), we define a measure that generalizes the ACLR concept
to multi-antenna transmission. We define the MIMO-ACLR as

MIMO-ACLR(θ) ,
max{

∫ −B/2
−3B/2 E[Sθ(f) ] df,

∫ 3B/2

B/2 E[Sθ(f) ] df}∫ B/2
−B/2 E[Sθ(f) ] df

. (3.55)

In this definition, the expectation is taken with respect to the small-scale fading. The small-
scale fading h̃θ(f) is assumed to be independent of that of the UEs h̃θk(f), for all k, so that

h̃θ(f) and Syy(f) are independent.

We show that the measure MIMO-ACLR has the following properties, if E
[
h̃θ(f)h̃H

θ (f)
]

=
IM , for all θ:

P1 It does not depend on the large-scale fading βθ and is the same for all θ.

P2 It does not change if the transmitted signal is scaled.

P3 It is equal to the per-antenna ACLRm and to the ACLR of a single-antenna system with the
same radiated power.

The properties P1, P2 and P3 follow from (3.51), which gives

MIMO-ACLR =
max

{∫ −B/2
−3B/2 E[Stx(f) ] df,

∫ 3B/2

B/2 E[Stx(f) ] df
}∫ B/2

−B/2 E[Stx(f) ] df
, (3.56)

where the argument θ has been dropped.
Further, we conjecture that the measure MIMO-ACLR has this property:

C1 It depends only weakly on the power allocations {ξk} and the path losses {βθk} of the UEs.

The conjectured property C1 remains a conjecture in this study. It is however made plausible
by the fact that the optimal transmit direction of each UE k does not depend on its path loss
βθk in MaMi, see [52].

It is important to note that a MaMi system can radiate less power than a single-antenna
system for a given performance requirement by virtue of the high array gain of the precoding.
Because the radiated power is reduced, the absolute amount of disturbing power a victim that
operates in an adjacent band suffers from is also reduced in the MaMi system, even if the
ACLR in the single-antenna system and the MIMO-ACLR in the MaMi system are the same.
Property P3 of the MIMO-ACLR measure thus suggests that the MIMO-ACLR for MaMi can
be higher than ACLR can be for a single-antenna system without disturbing communication in
adjacent bands more—the difference between MIMO-ACLR and ACLR roughly being equal to
the array gain of the MaMi system.
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Worst-Case Out-of-Band Radiation

If coding can be done over multiple channel coherence intervals, then only the average amount of
received OOB radiation is relevant for a victim. However, there are cases, where coding cannot
be done over multiple coherence intervals, e.g., because of latency constraints or because the
fading is static as in a line-of-sight scenario. In these cases, one has to study whether there
are points, to which the OOB radiation is beamformed, in order to protect victims in every
coherence interval. To study whether there are such points, we study the maximum PSD, which
is defined as

Smax(f) , λmax

(
Syy(f)

)
. (3.57)

This corresponds to the highest normalized power received at a given frequency at any point,
i.e.

βθ‖h̃θ(f)‖2Smax(f) ≥ Sθ(f), ∀θ. (3.58)

Note that Smax(f) bounds the maximum received power at frequency f for all channel vectors
h̃θ(f). There is a possibility, however, that the maximizing channel vector has zero probability
to show up in the physical environment. The measure might therefore be a rather loose upper
bound, in the sense that the maximum power it indicates is rarely seen by a victim UE.

3.3.4 Simulation of Spatial OOB Distribution

In this section, the spatial distribution of the OOB radiation is studied for some representative
scenarios. All continuous-time signals are simulated with κ = 5-times oversampling. A memory-
less, third-order polynomial model is assumed, where bmp(τ) = bmpδ(τ), for p = 1, 2,∀m, and
bmp(τ) = 0, for p > 2. Then the cross-correlation in (3.42) simplifies into

Rymym′ (τ) = b∗m1bm′1Rxmxm′ (τ) + 2Rxmxm′ (τ)

×
(
b∗m1bm′2σ

2
xm + b∗m2bm′1σ

2
xm′ + b∗m2bm′2(2σ2

xmσ
2
xm′ + |Rxmxm′ (τ)|2)

)
. (3.59)

We set bm1 = 1 and bm2 = −0.03491+j0.005650 for all m (obtained through linear regression
on measurements on the class ab amplifier that can be run from [32]) and let the amplifier
operate at its 1 dB-compression point. As pulse shaping filter, we chose a root-raised cosine
with roll-off 0.22, as in LTE [1], which gives the normalized bandwidth BT = 1.22.

Two channel scenarios are considered: line-of-sight and independent Rayleigh fading. For
simplicity, all UEs are assumed to be at the same distance from the BS and experience the
same large-scale fading, i.e. βθk = 1,∀k. Equal power allocation is applied, i.e. ξk = 1/K, ∀k.

In the line-of-sight scenario, there is only one path between each antenna and each UE: the
direct non-obscured path. Furthermore, a uniform linear array is considered. Denote the angle
to the k-th UE by θk. The channel to UE k is then:

hθk(τ) = ejφkσkδ(τ), (3.60)

where φk is the phase shift due to the propagation delay to the array, and σk is the steering
vector to UE k. The phase shift is assumed to be uniformly distributed over [0, 2π]. The m-th
element of the steering vector, in the case of a linear array with uniform spacing, is given by
[σk]m = ej2πm∆ sin(θk)/λ, where ∆ is the distance between the antennas and λ the wavelength of
the signal carrier. We study the case of ∆ = λ/2, which is commonly regarded as the smallest
interantenna distance that results in little coupling between antennas.
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Figure 3.15: Power spectral densities for a system with 10 UEs and 100 antennas in a Rayleigh
fading channel.

In the non-line-of-sight scenario, we model the channel as i.i.d. Rayleigh, i.e., each element
in the oversampled channel impulse response is i.i.d.

LP
{
H(τ)

}
(`T/κ) ∼ CN (0, 1/L), (3.61)

where LP{·}(t) is an ideal low-pass filter with cutoff frequency κ
2T

and where L is the number
of non-zero channel taps. We study the case where L = 15κ, which corresponds to a maximum
excess delay of 15 symbol durations.

We define the received in-band power, adjacent-band power and maximum adjacent-band
power as

Pib(θ) ,
∫ B/2

−B/2
Sθ(f)df, (3.62)

Pob(θ) , max
{∫ −B/2
−3B/2

Sθ(f)df,

∫ 3B/2

B/2

Sθ(f)df
}
, (3.63)

Pob,max , max
{∫ −B/2
−3B/2

Smax(f)df,

∫ 3B/2

B/2

Smax(f)df
}
. (3.64)

The power spectral densities in Figure 3.15 are from a system with 100 antennas that serves
10 UEs using MR precoding over a realization of a frequency-selective Rayleigh fading channel.
Because of channel hardening, generating another channel does not change the general appear-
ance of the curves. By measuring the vertical distance between the transmitted PSD Stx(f)
(black) to the PSD Sθk(f) received at the UE with the smallest Pib(θk) (red), we see that the
array gain of the in-band power of even the weakest UE is around 10 dB. Furthermore we see,
when the maximum PSD E[‖h̃(f)‖2]Smax(f) = MSmax(f) (blue) is compared to the transmit-
ted PSD Stx(f), that the worst-case OOB power has a much smaller array gain, around 2 dB.
The received PSD Sθ(f) at many random points θ were generated, each with an independent
Rayleigh fading channel vector. All had the same general appearance as the one that is plotted
in yellow. The received power varies around the radiated power level and is well below the
maximum PSD.

In Figure 3.16, the adjacent-band power Pob(θ) of a line-of-sight system can be OOB seen
for different directions around the array. From the peaks, it can be seen that the power OOB is
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Figure 3.16: The adjacent-band power in different directions in a line-of-sight channel with 100
antennas and 10 UEs. The vertical lines indicate the directions of the UEs.

beamformed in the directions of the served UEs. The highest of these peaks is 4 dB above the
transmitted adjacent-band power in this case. This is also how high the maximum adjacent-
band power Pob,max (which upper bounds the adjacent-band power of any victim—not neces-
sarily in line-of-sight) is above the transmitted adjacent-band power. The array gain of the
worst-case adjacent-band power is thus slightly higher than in the Rayleigh fading case, but
still significantly lower than the array gain seen in-band, which is 10 dB (cannot be seen in the
plot). In between the served UEs, we see that the OOB power is approximately equal to or
slightly lower than the radiated OOB power Stx(f).

These observations can also be made by studying the eigenvalue distribution of the correla-
tion matrix Syy(f) at different frequencies, see Figure 3.17, where a 100-antenna system that
serves both 10 UEs and 1 UE is studied for one realization of a Rayleigh fading channel. We see
that, for 10 UEs and frequencies f < B/2, 10 out of 100 eigenvalues are 20 dB larger than the
rest. These correspond to the directions of the UEs. At OOB frequencies f ≥ B/2 however,
there are no eigenvalues significantly above the average, which is marked by a dot. This means
that, even in a worst-case scenario, a victim will not receive significantly more power OOB than
on average.

In a single-user MaMi system, the OOB radiation is distributed differently, see the dashed
lines in Figure 3.17. The signal OOB is more directive than in the multiuser case and has an
array gain of approximately 10 dB in the strongest direction. This should be compared to the
signal in-band, which has an array gain of 20 dB. We also see that 20 % of the eigenvalues are
2 dB above the average at f = B

2
, which means that the probability of an OOB radiation level

that is higher than the average is significant.

3.3.5 Simulated PSD and PA Efficiency

We have shown that UEs operating in adjacent channels essentially do not receive any inter-
ference enhancement due to the antenna gain. We now verify the validity of this result from a
system-level perspective. More precisely, the impact of the system load and precoding design
is explored. We further extend our discussion simulating different scenarios to determine how
close to saturation and at which efficiency the PA can be operating. The impact of channel
correlation over neighboring antennas is also investigated.
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Figure 3.17: The complementary cumulative distribution of the eigenvalues of the correlation
matrix Syy(f) at different frequencies f for a Rayleigh fading channel with 100 antennas and 10
UEs (solid lines), and 1 UE (dashed lines). The dot on each curve marks the average eigenvalue
Stx(f)/M .

Simulated in-band and out-of-band PSD

We assume a 20 MHz OFDM system with 2048 subcarriers of which 1200 are actively allocated,
based on LTE. A raised-cosine pulse shaping filter with a roll-off factor of 0.22 is used. The RF
power amplifier follows a third-order polynomial model. The PA operating point is generally
characterized by the Power Input Backoff PIBO, measuring the input signal margin with respect
to P1-dB, the 1-dB compression point where saturation effects become noticeable. In the fol-
lowing an input power backoff PIBO = −30 dB is considered, effectively operating in complete
saturation. We consider first a multi-tap independent Rayleigh channel model, i.e. R = I. The
average transmitted power per antenna is normalized to 0 dB. Based on M = 100 antennas, the
total output power is hence γ = 20 dB.

Figure 3.18 shows the PSD for a system with M = 100 transmitting antennas and K = 1 UE,
using ZF precoding. Observing the received PSD of the target UE, we see that the effect of the
array gain applies only in-band, giving a 20 dB gain, while the received power in the adjacent
band is equal to the transmitted power. In contrast, the received power of a UE positioned at
a random position follows the same behavior as the transmitted power both within and out of
the band. The simulation highlights that coherent combination occurs only in band and that
a UE randomly located in space is not experiencing this combination gain. MaMi provides in
this scenario an ACLR = −39 dB, despite operating in complete PA saturation.

Similar observations can be extracted from Figure 3.19 where the system has been extended
to K = 10 UEs. The in-band array gain is still 20 dB, but due to the presence of more UEs
sharing the transmitted power, the relative difference between a desired UE and a random UE
reduces to 10 dB. Here ACLR = −29 dB is obtained. The frequency-domain fluctuations are
also smaller with K = 10 than with K = 1 due to the averaging effects.

Let us assess the impact of different precoding. Figure 3.20 shows the performance of a
MaMi with M = 100 and K = 25 using both ZF and MRT. MaMi provides ACLR = −26 dB
using MRT while ACLR = −24 dB is obtained when ZF is used. The difference between ZF
and MRT is hence 2 dB on ACLR for this 100 × 25 configuration, while for smaller K the
characteristics of ZF and MRT tend to be nearly the same from the PSD point of view. This is
not the dominant argument for precoder selection, given that MRT simply does not work at a
high load such as 100× 25, but it is worth noting that the load of the system and the selected
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Figure 3.18: MaMi PSD with M = 100, K = 1, PIBO = −30 dB. The desired UE is compared to
a random UE at a similar distance. The total BS output PSD is also provided with or without
the non-ideal (n.i.) linearity behavior.
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Figure 3.19: MaMi PSD with M = 100, K = 10, PIBO = −30 dB.
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Figure 3.20: MaMi PSD with M = 100, K = 25, PIBO = −30 dB. Comparison between ZF and
MRT precoding.

precoder should be jointly designed to meet the OOB requirements.

Power Amplifier Operating Point

In general, the transmitted signal power spectrum is regulated by a spectral mask. Some power
input backoff is usually adopted in order to limit spectral regrowth within the mask limit,
instead of operating in full saturation. Increasing the backoff reduces the nonlinear distortion,
but also reduces PA efficiency. Minimizing power backoff is thus desirable, targeting the highest
efficiency while still meeting non-linear distortion constraints. Let us assess the impact of PIBO

on the OOB and retrieve the minimum PIBO which meets the LTE spectral mask requirements.
Figure 3.21 shows the PSD for a system with M = 100 and K = 10 when PIBO = 0 dB. As

expected, increasing the power input backoff reduces the nonlinear distortion and ACLR =
−47.5 dB is obtained, as compared to -29 dB when operating at saturation on Figure 3.19, even
if PIBO = 0 dB is still a very low back-off value in traditional systems.

We define the minimum PIBO which can be selected to satisfy standard-compliant regula-
tions considering as reference the 3GPP requirement [2] which sets the absolute OOB limit to
−13 dBm/MHz. For comparison we convert this absolute specification into an ACLR form.
Hence, in the considered 20 MHz bandwidth the total allowed OOB emission is 0 dBm. In
SISO-LTE the maximum output power is fixed to PSISO = 43 dBm which leads to a maximum
ACLR = −43 dBc. In MaMi operation, the output power can be lowered, thanks to the array
gain:

PMaMi =
K

M
PSISO. (3.65)

In the considered 100 × 10 configuration, we can consider a total output power of PMaMi =
33 dBm which in terms of ACLR requirements translates into ACLRmax = −33 dBc. Figure
3.22 can be used in order to find the optimal operating point of the PA. We notice that the
ACLR requirement is satisfied for PIBO = −10 dB. Hence, the PA can work in strong saturation
while still satisfying the ACLR requirement. Traditionally the PIBO is a positive value of
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Figure 3.21: MaMi PSD with M = 100, K = 10, PIBO = 0 dB.
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Figure 3.22: Variation of ACLR with PIBO in a MaMi with M = 100, K = 10. 3GPP require-
ment is satisfied with PIBO = −10 dB.
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Figure 3.23: Top: characteristic of third-order polynomial model compared to model proposed
in [17]. Bottom: efficiency of the reference model over PIBO: η = 65.4% for PIBO = −10 dB.

several dB, however in MaMi even a completely saturated PA satisfies the 3GPP requirement,
enabling the use of very high efficiency PAs. To give a numerical value of the PA efficiency,
we refer to [17] which proposes a mathematical model that jointly models the linearity and
efficiency of PAs. We use this model2 to approximate the third-order polynomial model and
to extract the PAs efficiency. Figure 3.23 shows the third-order polynomial model compared
to the reference model. The third-order polynomial model is normalized to have P1-dB = 0 dB.
Applying PIBO = −10 dB, Figure 3.23 shows that at the selected operating point the PA exhibits
an efficiency of η = 65.4%. MaMi systems require less stringent OOB specifications and PAs
hence tolerate relaxed linearity requirements with respect to traditional communication systems.
Due the high array gain, MaMi radiates less power while providing the same QoS as traditional
systems, hence the amount of interference experienced by a UE operating in an adjacent channel
is lower in MaMi.

Impact of the Channel Correlation

Let us now extend the analysis by considering a covariance matrix R which includes the spatial
propagation environment and array geometry. We assume a Uniform Linear Array (ULA)
with correlated antenna elements. We generate the coefficient of R following the exponential
correlation model:

rij =

{
rj−i, i ≤ j
r∗ji, i > j

, |r| ≤ 1 (3.66)

where the parameter r is the correlation coefficient. The effect of the antenna correlation on
the system diversity is comparable to a reduction of the number of antenna elements, thus we
expect a reduction of in-band gain and consequently a worst ACLR.

We consider r = 0.7, which can approximate the measured correlation in Figure 10 of [50].
In a scenario with K = 10 UEs, employing a fully saturated PA (PIBO = −30 dB), Figure

2We select the quiescent point Q = 0.61 and normalized load resistance RL/Rref = 0.9, based on the empirical
results reported in [17].
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Figure 3.24: Effect of antenna correlation, varying the number of antenna, on the ACLR in a
MaMi with K = 10, PIBO = −30 dB.

3.24 shows the variation of the ACLR with the number of antenna elements in the ULA, for
r = 0 (uncorrelated antenna elements) and r = 0.7. We observe that the choice of a different
correlation model has a significant impact on the OOB. When using correlated antennas with
r = 0.7, approximately 20 additional antennas are required to guarantee the same ACLR as
the uncorrelated model. However, the reduction in ACLR when not adding antennas is around
1 dB only, thus comparing with the results of the previous section the PAs can still operate in
saturation region. In summary, as expected the antenna correlation affects the ACLR metric
but MaMi provides enough margin to let the PAs work in high efficiency region.

3.3.6 Conclusions

In this section, we have shown that MaMi systems can operate with lower linearity requirements
on the power amplifiers compared to conventional single-antenna systems without increasing
the disturbance of communication in adjacent bands. If the amount of radiated power and
the linearity constraints are the same, a victim that operates in an adjacent band will receive
the same amount of disturbing OOB radiation from a single-antenna system as from a MaMi
system. Because of precoding and the large array gain it gives, a MaMi system can lower its
radiated power and still serve its UEs with the same quality of service as the single-antenna
system. The amount of disturbing OOB power is thus reduced in the MaMi system.

For specific realizations of the channel impulse response however, the small-scale fading of a
victim might line up with the signal transmitted OOB and the victim then experiences much
higher disturbing OOB radiation compared to the average. Such a worst-case event can be a
problem if (i) the fading is time-invariant or (ii) if it occurs often, which can only happen if the
small-scale fading of the victim is correlated to the channels of the served UEs. We have seen
that the largest amount, by which the OOB radiation received by a victim at a frequency f
can increase, is determined by the ratio MSmax(f)/Stx(f). In multiuser scenarios, this ratio is
small; for example, 2–4 dB with 100 antennas and 10 UEs. In a single-user scenario however,
this ratio can be much higher—in Rayleigh fading with 100 antennas, it is 10 dB. If coding can
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be done over multiple coherence intervals, however, worst-case events are not a problem since
data lost during one coherence interval can be recovered.

System simulations confirm the benefit of the non-coherent addition of components coming
from the different antennas. We proved that fully saturated PAs in MaMi provide better ACLR
compared to traditional communication systems. We find that also assuming channel correlation
over neighboring antennas, fully saturated PAs satisfy the 3GPP spectral mask requirements.

Further, we have seen that OOB radiation can be measured over the air in terms of MIMO-
ACLR and that MIMO-ACLR is the same as the per-antenna ACLR measured at the BS. To
measure and constrain the radiated OOB power at the BS is thus sufficient to limit the average
amount of power a victim in an adjacent band is disturbed by.

Usually the power from the different PAs dominates the BS power consumption, due to the
large output power. The use of high-efficiency non-linear PAs enables significant power savings,
thanks to gains in terms of energy efficiency. The operating region of the PAs is often determined
by the OOB radiation. Since MaMi systems require less stringent OOB specifications, PAs can
operate at relaxed linearity requirements with respect to traditional communication system. For
instance, we find that PAs operating at PIBO = −10 dB, satisfy OOB regulation and provide
PA efficiency of η = 65%.

In conclusion, in MaMi systems, OOB radiation is not a limiting factor, hence enabling the
use of highly efficient saturated PAs and reducing the BS power consumption.
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Chapter 4

Hardware Implementation of Baseband
Processing

This chapter provides an update on the hardware implementation of signal processing algo-
rithms for MaMi. Section 4.1 describes hardware accelerators, implemented in CMOS, that
efficiently handles the key baseband processing tasks. The energy consumption related to these
processing tasks are evaluated in Section 4.2. Finally, Section 4.3 describes a proposed pro-
cessing architecture, where different tasks are divided between per-antenna, per-subcarrier, and
per-UE processing.

4.1 Hardware Accelerators

This section describes the hardware accelerators implemented within the MAMMOET project,
which deal with key processing tasks such as OFDM modulation, downlink precoding, and
uplink detection.

4.1.1 Low Latency and Area-efficient FFT/IFFT Processor

Wideband MaMi system typically use OFDM as the modulation scheme. With M antennas at
the BS, such a system requires M OFDM modulator (IFFT) and demodulator (FFT) blocks
for transmission and reception, respectively. An N -point FFT/IFFT has the complexity of
O(N · log2(N)). Thus, the computational complexity of either uplink demodulation or downlink
modulation of a MaMi system is O(M ·N · log2(N)). In Deliverable 3.2 [39], we showed that the
FFT/IFFT processor has three times higher complexity than the MIMO precoding/decoding
blocks. Moreover, the FFT/IFFT processors are key in the processing path, where critical
latency constraints have been to guarantee a swift uplink-downlink turnaround time.

To tackle the aforementioned design challenges, we propose a low-latency and area-efficient
FFT implementation. The main idea is to use the OFDM guard bands to reduce the opera-
tion counts and processing time, resulting in 42% latency reduction compared to single-input
pipelined FFT processors reported in the literature. In order to realize this idea, a modified
pipelined architecture combined with an efficient data scheduling scheme is proposed. Moreover,
using proper resource sharing, the proposed scheme is capable of performing both OFDM mod-
ulation and demodulation for two BS antennas, reducing area without sacrificing throughput
or latency.

Generally, an N -point FFT has a latency of N clock cycles, given one input per clock,
as shown in Figure 4.1(a). To achieve a latency less than the IFFT size, a new approach is
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Figure 4.1: Data flow of a single-input pipelined IFFT in a one-antenna scenario for: (a)
traditional scheme with continuous input, (b) traditional scheme with non-continuous input,
(c) proposed low latency scheme with continuous input. The numbers in these figures are
connected to N , P , and Z shown in Figure 4.2.
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Figure 4.2: Data format of OFDM symbols with N = 2048 and 1200 used subcarriers. The
proposed scheme can be used for other values of N , P , and Z.
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Figure 4.3: Proposed modified pipelined architecture for FFT/IFFT processor.

proposed. As mentioned above, the main concept is to use the OFDM guard bands to modify
the IFFT calculation and reduce operation counts, decreasing latency significantly. Figure 4.2
shows the position of guard band zeros in the OFDM symbols. Due to symmetry between zeros
and non-zero samples, a radix-2 FFT/IFFT algorithm is chosen, which includes 11 stages (i.e.,
log2(N)). In the first stage, the following butterfly operation is done for each pair of the input
samples: {

yl = xl + xl+N
2

yl+N
2

= xl − xl+N
2

l = 0, 1, . . . ,
N

2
− 1. (4.1)

There are two types of input pairs in Figure 4.2. In Type I, each pair includes one pre-known
zero-sample (dotted arrows in Figure 4.2) and in Type II both samples are non-zero (solid arrow
in Figure 4.2). As long as a non-zero sample of Type I enters the IFFT, the result of (4.1) is
known without doing the butterfly. This means that, all Type I pairs can skip the butterfly
in Stage 1 and go directly to Stage 2, without waiting for the remaining input samples. This
significantly reduces the operation count, processing time, and latency. The corresponding data
flow of the proposed scheme is shown in Figure 4.1(c), where the OFDM symbols can be entered
and processed without any gaps and latency is decreased to 1200 clock cycles. Figure 4.1(c)
also confirms that the proposed scheme can be used to perform both FFT and IFFT for two
BS antennas, resulting in around 50% area reduction without sacrificing latency.
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Table 4.1: FFT/IFFT Implementation Result with ST 28nm CMOS

Latency (Clocks) Latency (µs) Gate Count Clock Frequency
1200 2.4 167 kG 500 MHz
Area Power Throughput Energy Efficiency

0.08 mm2 8.2 mW 1 GS/s 8.2 pJ/S

In order to realize the idea of latency/area reduction, a new modified pipelined architecture
is proposed, as shown in Figure 4.3. Management of the memories and butterfly of Stage 1 is
performed by Control Unit 1. Control Unit 2 performs the same task for the remaining stages.

The proposed FFT processor has been synthesized using 28 nm CMOS technology and
provides a throughput of 1 GS/s at 500 MHz. Table 4.1 shows the post-synthesis results.

4.1.2 QRD-based ZF Precoder with Approximative Givens Rotation

Several methods can be used to realize low-complexity ZF operation by leveraging the unique
feature of MaMi channel matrix. In Deliverable 3.2 [39], we introduced a QR decomposition
based matrix inversion, where 50% complexity reduction has been achieved by exploiting the
fact that the Gramian matrix in MaMi system is diagonally dominant.

In this deliverable, our focus is on implementation architecture and the corresponding chip
measurement results. Systolic arrays consists of homogeneous hardcoded network of nodes or
PE, with each PE usually performing the same sequence of tasks. Due to the homogeneity,
these architectures are easily scalable and have relatively lower design time. For the proposed
downlink precoding, systolic arrays are used for all stages as shown in Figure 4.4 and described
as follows:

• Let H denote the downlink channel matrix of size M × K in a MaMi system with M
BS antennas and K single-antenna UEs. The first operation is to perform matrix mul-
tiplication to generate the Gram matrix of H , i.e., G = HHH . In case of generating
Hermitian or Gram matrices, the same systolic array can be used, but with only half the
PE in a triangular form. This is achieved due to the symmetrical property of a Hermitian
matrix. Both K2 (2-D) and K (1-D) systolic arrays are used for QRD which have a time
complexity of O(K) and O(K2) respectively. Here, we employ a 2-D systolic array with
K2/2 +K PE, hence having a time complexity of K.

• The second operation is to triangularize the Gram matrix, which is performed by a 2-D
triangular systolic array. The approximative QRD can be leveraged to either lower the
number of multipliers (gate count) or lower clock cycles (latency). In this step, the Gram
matrix G is decomposed into a unitary matrix Q and upper triangular matrix R.

• After the QRD, the user data vector s is multiplied with an orthonormal matrix Q as

u = QHs. (4.2)

Generating the orthonormal matrix Q is an expensive procedure in hardware. This would
require another systolic array with K2 nodes. However, to reduce the gate count a 1-D
systolic array is proposed which performs the rotation operations on the data vector
(implicit). The coefficient and sequence of rotations need to match that of QRD.
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Figure 4.4: Top level description of the systolic downlink precoding system for MaMi. There
are four modules and the corresponding PEs are described below the respective modules.

Table 4.2: ZF Precoder Implementation Result with ST 28nm CMOS

Matrix Dimension Gate Count Clock Freq. Power
8× 8 138 kG 300 MHz 31 mW

Precoding Rate QRD Latency (Cycles) QRD Throughput Energy Efficiency
300 Mb/s 64 4.7 MQRD/s 103 pJ/b

• After the rotation, the vector u is multiplied with the triangular matrix as

v = R−1u. (4.3)

To avoid explicitly computing the inverse of triangular matrix and then performing the
matrix vector multiplication, we employ a backward substitution based linear systolic
array.

All these operations are envisioned to run in parallel on different subcarriers to fully utilize the
hardware.

The proposed architecture has been fabricated using ST 28nm FD-SOI technology. Figure
4.5 shows a chip photo where the QRD-based precoder is located in the upper left corner. Table
4.2 summarizes the chip measurement results.

4.1.3 Uplink Detector using Cholesky Decomposition

Low complexity and near optimal performance makes linear detection an obvious design choice.
Consider the received uplink signal y = Hs + w. The MRC can be performed as

ŷ = Zs + ŵ , (4.4)
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Figure 4.5: Chip photo.

where ŷ = HHy, Z = HHH and ŵ = HHw. However, the claims for high performance with
MRC assumes spatially uncorrelated channels and high BS antenna to UE ratio. This might
not hold true in practical system, e.g., in the case of highly correlated LoS or large K as in
stadium scenario. With extra computation, other linear detection, like ZF and MMSE, can
improve the performance by performing inteference cancellation. However, to some scenarios,
non-linear detection techniques like tree-based algorithms are essential to provide more robust
detection performance.

The application of tree-based detection algorithms on (4.4) needs to handle the colored noise
ŵ. An exhaustive depth-search considering the noise variance will not impact the performance,
however it is expensive in hardware. An approach to whiten the noise is to first perform
Cholesky decomposition on the Gram matrix Z = LLH , where L is a lower triangular matrix.
Afterwards both sides of (4.4) are multiplied with L−1 as

ȳ = LHs + w̄ , (4.5)

where ȳ = L−1ŷ and w̄ = L−1ŵ. Computing L−1 explicitly is avoided by employing a forward-
substitution module. Performing back-substitution on (4.5) is equivalent of zero-forcing (ZF)
linear detection. Furthermore, in (4.5), noise w̄ is now whitened, i.e.,

E(w̄w̄H) = E((L−1ŵ)(L−1ŵ)H)

= E((L−1HH)wwH(L−1HH)H)

= E((L−1)HHH(L−1)H)

= E(L−1LLH(LH)−1) = IK .

Hence, using Cholesky decomposition for linear detection has an added advantage/ability of
switching over to non-linear detection techniques for higher performance.

The proposed framework for adaptive detection is described in Figure 4.6, wherein switching
between linear and non-linear detection is accomplished based on performance requirement.
The following modes can be envisioned for the architecture

• Mode 1: The first detection option in the architecture is MR, which is multiplying the
incoming signal with the hermitian of the channel estimate.
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SNR

Figure 4.6: Top level architecture of the Cholesky decomposition based adaptive detection.

Alg. 1 Cholesky Decomposition of a K×K Hermitian positive definite Z to a lower triangular L.

for p = 0→ K − 1 do
for q = 0→ p do

for a = 0, r = 0→ q − 1 do // Dot Product
a+ = L[p][r] ∗ (LH [q][r])

end for
if p == q then // Compute L values

L[p][q] =
√

Z[p][q]− a
else

L[p][q] = (Z[p][q]− a)/L[q][q]
end if

end for
end for

• Mode 2: For ZF or minimum mean square error (MMSE) the output of maximum ratio
(MR) is used for further processing. This involves computing the Gram matrix followed
by Cholesky Decomposition and then performing forward and backward substitution on
(4.4).

• Mode 3: In this mode the output after forward substitution i.e., (4.5) is used for non-
linear detection schemes. Due to the decolored noise standard tree search implementa-
tions, like K-Best or Sphere decoder, can be employed.

The selection of these modes can also be a trade-off between complexity and performance. Also,
the higher non-linear detection performance can be leveraged to perform antenna selection and
turn-off antennas at base station (BS), with an increased detection processing cost.

The Cholesky decomposition algorithm in Alg. 1 is used for mapping into hardware. It
consists of 3 for-loops, outer main loop has K iterations, the inner loops iterate over the index
of the previous loop. The inner most loop performs an accumulation and has an O(0.5K3). This
accumulated value is used to compute elements of L, and requires either a square root or division
operation. Different implementations in hardware can be envisioned based on parallelization
and pipelining by unrolling the for-loops.

Word-length optimization is a crucial aspect for an efficient hardware implementation. An-
other important hardware trade-off is between parallelization and cost. In general, reducing
the computation time leads to a higher hardware cost. The actual design space has many
more parameters, e.g., pipelining factor, targeted frequency, power, area, high speed/low power
libraries etc. As a case study, an unrolling factor of 16 and a word-length of 12 bits are used
for implementation, corresponding to a latency of 325 clock cycles and Signal-to-Quantization-
Noise ratio (SQNR) of around 50 dB. The high accuracy is achieved by employing a bit accurate
division and square root units. A standard sequential restoring arithmetic algorithm is used
for both square root and division implementation [31]. This approach has a large critical path
mainly due to the repetitive subtractions and comparisons. To overcome the speed compared to
approximative fast techniques (Newton Raphson), a two stage pipelining is performed as shown
in Figure 4.7. The architecture consists of a multiplexer network which feeds data from the
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Figure 4.7: Top level architecture for Cholesky Decomposition.

Table 4.3: Uplink Detector Implementation Result with ST 28nm CMOS

MIMO Dimension Gate Count Clock Freq. Power
128× 8 148 kGE 300 MHz 18 mW

Detection Rate Modulation Area Efficiency Energy Efficiency
300 Mb/s 256-QAM 2.02 Mb/s/kGE 60 pJ/b

register file to the multipliers. A generic adder tree network performs the vector dot-product to
compute the scalar value. This scalar value (a) is used for further computations and updates
the output register file based on the element pointers.

To reduce the power consumption, two techniques are employed, namely global clock gating
and body-biasing. The implementation supports different clock gating modes, e.g., automatic
clock gating based on module activity. In FD-SOI technology the planar back-side of a gate
allows for a higher electrostatic control and body biasing efficiency. The implementation exploits
body-biasing to either lower power consumption by performing reverse body-biasing (RBB) or
improve performance by forward body-biasing (FBB). In the next section, measurement results
of a 28 nm FD-SOI ASIC are presented, mainly focusing on energy and latency.

The Cholesky decomposition processor is also part of the fabricated chip shown in Figure
4.5 (lower part). The chip measurement results of the detector is listed in Table 4.3.

4.2 Energy Consumption Profiling

In Section 4.1, we discussed and presented the key signal processing blocks in a MaMi baseband
system. They are all implemented using ST 28nm FD-SOI technology. The corresponding
energy efficiency (obtained by chip measurement or post-synthesis simulation) for FFT/IFFT
processor, precoder, and detector are 8.2 pJ/sample, 103 pJ/bit, and 60 pJ/bit, respectively.

If we consider a MaMi system with 128 BS antennas, 20 MHz bandwidth, 30.72 MS/s
sampling rate (out of 2192 samples, 1200 are for data transmission, 144 for CP, and 848 for guard
band), and 16-QAM modulation. This system serves 8 signal-antenna UEs simultaneously. The
total data rate of such a system setup is 538 Mb/s.

The power consumption of the FFT processor can be calculated by

pFFT = 8.2 pJ/S · 30.72MS/s · NFFT

2192
·M · S, (4.6)
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Figure 4.8: Digital Baseband Processing in an OFDM-based MaMi system for M BS antennas
and K UE. The highlighted blocks are unique for MaMi and require special treatment due
to scaling of complexity. The OFDM processing blocks include cyclic-prefix and guard-band
removal on the uplink and cyclic prefix and guard-band addition on the downlink.

where M is the number of BS antennas, NFFT is the FFT size, and S is the scaling factor
between post-synthesis power and chip measurement result. Here, we take 1.5 for S based on
our experience. In the system described above, the power consumption for FFT processor is
34.5 mW. The corresponding power consumption of precoder and detector are 55.4 mW and
32 mW, respectively.

4.3 Processing Architectures

The different parts of the OFDM based MaMi digital baseband processing system can be
grouped into PAP (per-antenna processing), PSP (per-subcarrier processing), and PUP (per-
UE processing), as shown in Figure 4.8. We can identify inherent parallelism and observe that
processing complexity scales with the number of BS antennas M , the number of UEs K, or
both.

• PAP: Scales with M as each antenna requires OFDM processing, digital/analog front-end.

• PSP: Scales with M and K as the channel matrix grows and is required per subcarrier.

• PUP: Scales with K, i.e., the number of UEs.

Note, that MRC/MRT algorithms and channel estimation may be performed on a per-
antenna basis. However, to concentrate all reconfigurable processing inside specific blocks, we
consider those to be part of the PSP throughout in the rest of this section. This simplifies
overall partitioning and system design by providing a constant sharp edge between the different
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for per-subcarrier processing, user processing accelerator (UPA) for per-user processing

domains independent of the applied algorithms. As a ground step, the system can be partitioned
according to the data flow in PAP, PSP and PUP.

Figure 4.9 shows this generalized partitioning, which takes into account, that the processing
characteristics and implementation requirements are different, e.g., processing latency, available
parallelism and reconfigurability. Thereby, a heterogeneous architecture is necessary to achieve
implementation efficiency.

We also separate two different implementation approaches. First, accelerators which are
parameterized hardware dedicated for a certain functionality. Second, reconfigurable hardware
defined as hardware designs which allow high reconfigurability and are capable to map arbitrary
functionalities within a certain application domain.

The digital part of PAP mainly consists of digital front-end and OFDM processing and is
encapsulated in the front-end (FE). The functionality is relatively fixed but to some extent re-
configurable, e.g., variable-length FFT/IFFT processor to support different bandwidths. These
reconfigurations are well implementable using accelerators. Given that PAP processing can be
performed at each antenna node individually, extensive parallelism can be explored which is
proportional to the number of BS antennas M .

PSP performs the channel estimation, detection and precoding including reciprocity compen-
sation and is encapsulated in the Reconfigurable Logic Cores (RLCs). RLC have to be highly
reconfigurable in order to adapt to changing operating conditions like current SNR regime,
number of connected UEs and correlation among UE channels. As discussed in Sec. 4.1, one
may use MR, ZF, MMSE, or even non-linear processing depending on current use cases. To
lower processing throughput and latency requirements, we take advantage of the subcarrier
independence in OFDM and distribute the overall subcarriers over Ncore different RLCs. The
multi-mode uplink detector we presented can be one example of such reconfigurable hardware.

The user processing accelerators (UPAs) perform PUP on the transmit/receive bits contain-
ing symbol demapping, deinterleaving and decoding on the uplink side; and encoding, inter-
leaving and symbol mapping on the downlink side. Modulation order and code rate may change
during run-time based on different SNR scenarios but overall functionalities remain quite con-
stant. Furthermore, deinterleaving/interleaving, as well as coding/decoding, in general require
large memories and therefore, accelerators are suited best.
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Chapter 5

Summary

The signal processing is the tool required to achieve the advanced precoding and detection
properties of MaMi, where tens of users can be served at the same time and frequency. It is
easy to over-dimension that signal processing capability and requirements of MaMi systems, by
presuming that the same processing tasks need to be carried out with the same resolution as
in a legacy system—but with tens of more BS antennas and users. Fortunately, the complexity
can be greatly reduced by tailoring the algorithms and implementation to the MaMi hardware
and system characteristics. In this deliverable, we present and evaluate efficient algorithms for
channel estimation, prediction and interpolation in the time-frequency domain. The robustness
that different detection algorithms have towards low-resolution quantization and man-made in-
terference has been described. Efficient power control schemes for the uplink and the downlink,
which exploit channel hardening to lower complexity, have been further described and ana-
lyzed. The changes in characteristics for the OOB radiation when using many antennas have
been analyzed. Finally, hardware implementation of key processing tasks have been described
and analyzed.

This deliverable serves as a continuation and validation of results disseminated in MAM-
MOET D3.1 and D3.2. The key new findings and contributions are summarized as follows:

• Channel predication can be used to prolong the time interval of the downlink transmission,
by adapting the precoding to predicted channel variations. The predictors are relatively
robust to imperfect statistics.

• The frequency-interpolation scheme, developed in D3.2, leads to an acceptable increase
in the complexity, making it feasible from a system perspective.

• The use of low-resolution ADCs at the BS is feasible, from both a rate and energy effi-
ciency perspective. As a rule-of-thumb, 3-4 bit per real dimension is sufficient for efficient
operation. Fewer bits are also possible, but with a noticeable performance loss.

• The M-MMSE detector, developed in D3.2, is robust to man-made interference and can,
generally, reject any type of interference—including pilot contamination. Hence, inter-
ference is not a fundamental limiting factor but a design question, where the number of
antennas and complexity of the processing scheme determine the interference level.

• Power control algorithms that utilize only large-scale fading characteristics provide an
efficient mean to optimize the sum rate or max-min fairness of MaMi systems.

• The OOB radiation is basically the same in MaMi as with legacy systems, using the same
total transmit power. This effectively means that a reduction in hardware resolution,
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which would result in more OOB radiation, should be combined with a corresponding
reduction in total transmit power.

• The basic signal processing tasks of OFDM modulation and ZF detection/precoding have
been successfully implemented in CMOS, for a typical MaMi setup. The complexity and
energy consumption is highly feasible for practical implementation.

We believe the MAMMOET project efforts collected in this deliverable, as well as D3.1 and
D3.2, serve as a solid foundation for hardware-aware MaMi signal processing and validation
of the practical feasibility of MaMi implementation. Many of the indications from previous
information-theoretic studies, around the potential of reducing the MaMi implementation com-
plexity and hardware resolution, have been thoroughly evaluated and proved. There are still
open problems that remain and new advanced algorithms to implement in hardware, which we
and others hopefully can solve after the MAMMOET project time span.
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List of Abbreviations

ACF autocorrelation function

ACLR adjacent-channel leakage ratio

ADC analog-to-digital converter

AGC automatic gain control

AMC adaptive modulation and coding scheme

AR auto-regressive

ARMA auto-regressive moving average

ASIC application specific integarted circuit

BER bit error rate

BCQI best CQI

BS base station

CDF cumulative distribution function

CMOS complementary metal-oxide semiconductor

CSI channel state information

CQI channel quality index

CWER codeword error rate

DFT discrete fourier transform

DSP digital signal processor

FBB forward body-biasing

FD-SOI fully depleted silicon on insulator

FE front-end

FFT fast Fourier transform

GOPS giga complex arithmetic operations per second

GP geometric program
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IBO input-back-off

IFFT inverse fast Fourier transform

LDPC low-density parity-check

LoS line-of-sight

LS least squares

LTE long term evolution

M-MMSE multi-cell MMSE

MaMi massive MIMO

MCS modulation and coding scheme

MIMO multiple-input multiple-output

MMSE minimum mean square error

MR maximum ratio

MRC maximum ratio combining

MRT maximum ratio transmission

MSE mean square error

OOB out-of-band

OFDM orthogonal frequency-division multiplexing

PAS power allocation scheme

PAP per-antenna processing

PE processing element

PQN pseudoquantization noise

PSD power spectral density

PSP per-subcarrier processing

PUP per-user processing

QAM quadrature-amplitude modulation

QoS quality of service

RBB reverse body-biasing

RF radio frequency

RLC reconfigurable logic core

MAMMOET D3.3 Page 100 of 101



Hardware-aware signal processing for MaMi systems

SE spectral efficiency

S-MMSE single-cell MMSE

SINR signal-to-interference-plus-noise ratio

SINQR signal-to-interference-thermal-and-quantization-noise ratio

SISO single-input single-output

SNR signal-to-noise ratio

SQNR signal-to-quantization-noise ratio

SVD singular value decomposition

UE user equipment

ULA uniform linear array

UPA user processing accelerator

ZF zero-forcing
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